

Congruence and Similarity Worksheet

1

NOT TO SCALE

The diagram shows a rectangle ABCD. E is a point on the diagonal AC such that $D\hat{E}C = 90^{\circ}$.

Prove that triangle *ADC* is similar to triangle *DEC*. Give a reason for each statement you make.

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

NOT TO SCALE

AC and BD are diameters of the circle, centre O.

Show that triangle ABC is congruent to triangle BAD. Give a reason for each statement you make.

[3]	
	[3]

- A, B and C are points on the circle centre O and AB = BC. P is the midpoint of chord AB and Q is the midpoint of chord BC.
- (a) Prove that triangle *OAP* is congruent to triangle *OCQ*. Give a reason for each statement you make.

60)	
	[3]
	F 7

OYC is a triangle.

A is a point on OY and B is a point on CY.

AB is parallel to OC.

AC and OB intersect at X.

(a) Prove that triangle ABX is similar to triangle COX. Give a reason for each statement you make.

•	
	[3]

AB is a diameter of the circle, centre O.
PA and QB are tangents to the circle at A and B respectively.

Prove that triangle *PAO* is congruent to triangle *QBO*. Give a reason for each statement you make.

100	

These two quadrilaterals are congruent. The lengths are in millimetres.

Find the values of x, y and z.

Answer
$$x = \dots$$

$$z =$$
 [3

7 These two triangles are congruent.

The lengths are in centimetres, correct to the nearest 0.1 cm.

Find p and q.

Answer
$$p = \dots$$

$$q =$$
 [2]

In the diagram, BE = 5 cm, CD = 7 cm and AE = 3 cm.

BE is parallel to CD.

(a) Express CD as a percentage of BE.

Answer	0/0	T11

(b) Find *ED*.

Answer		cm	[2]
--------	--	----	-----

9 Two bottles are geometrically similar. The ratio of the areas of their bases is 1 : 4.

Write down the ratios of their

(a) heights,

Answer	 :	 [:	1]	
		_		2

(b) volumes.

10 (a) The diagram shows two circles with equal radii. A, E and C are points on the circle, centre B. B, E, D and F are points on the circle, centre C. ABCD is a straight line.

(i) Show that triangles AEC and FBE are congruent.

[3]

(ii) State another triangle that is congruent to triangle AEC.

11 In the diagram, AB is parallel to DC and $A\hat{D}B = B\hat{C}D$.

(a) Explain why triangles ABD and BDC are similar.

(b)
$$AB = 4 \text{ cm}, BD = 6 \text{ cm} \text{ and } AD = 4.2 \text{ cm}.$$

(i) Calculate BC.

[2]

(ii) Write down the value of $\frac{\text{area of triangle } ABD}{\text{area of triangle } BDC}$

12 A, B, D and E are points on a circle.

AD and BE intersect at C.

(i) Show that triangles *ABC* and *EDC* are similar. Give your reasons.

Answer		
	(0)	[2]

(ii)

Given that AC = 5 cm, BC = 5.5 cm and CE = 2 cm, find the length of the chord AD.

13 In the diagram, the points P and Qlie on the sides BC and AC of triangle ABC. AB is parallel to QP.

AQ = 2 cm and QC = 4 cm.

The area of triangle CPQ is 6 cm^2 .

Find the area of

(a) triangle AQP,

(b) triangle *ABC*,

(c) triangle ABP.

cm	² [1]	
----	------------------	--

 $..... cm^2 [1]$

14

The triangles ABC and XYZ are similar and $A\hat{B}C = X\hat{Y}Z$.

$$B\hat{A}C = x^{\circ}$$
, $Y\hat{Z}X = y^{\circ}$ where $x \neq y$.
 $AB = 3$ cm, $XY = 4$ cm and $YZ = 5$ cm.

(a) Express \hat{ABC} in terms of x and y.

	^		
Answer	ABC =	[1

(b) Find *BC*.

Answer
$$BC = \dots$$
cm [1]

(c) Write down the value of $\frac{\text{area of triangle } ABC}{\text{area of triangle } XYZ}$

Answer	[1]

These two cylinders are similar.

The ratio of their volumes is 8:27.

The height of cylinder *A* is 12 cm.

Find the height of cylinder B.

A	B

Answer	cm	[2]	
--------	----	-----	--

