Page 1	Mark Scheme	
	IGCSE EXAMINATIONS – JUNE 2003	00 %
		90

Mark Scheme Notes

- Marks are of the following three types:
 - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:
 - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)

Page	e 2 Mark Scheme S
	IGCSE EXAMINATIONS – JUNE 2003
	Penalties Penalties
∕IR –1	A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW −1, 2 This is deducted from A or B marks when essential working is omitted.
- This is deducted from A or B marks in the case of premature PA -1 approximation.
- S -1 Occasionally used for persistent slackness.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation.

www.papaCambridge.com

JUNE 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS
Paper 1

		my
Page 1	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0606
*		90

			80
1.	x or y eliminated completely Uses the discriminant b²-4ac on a quadratic set to 0	M1 M1	Allow as soon as x or y elimina Condone poor algebra – quadration must be set to $0 - b^2$ -4ac = 0, <0, >0 all ok. For k and 0. For k \geq 0.
	Arrives at k = 0 from 32k = 0 Correct answer k≥0.	A1 A1 [4]	For k and 0. For k≥0.
2.	Length = $(1 + \sqrt{6}) \div (\sqrt{2} + \sqrt{3})$ Multiplying top and bottom by $\pm (\sqrt{3} - \sqrt{2})$ $\rightarrow \sqrt{3} + \sqrt{18} - \sqrt{2} - \sqrt{12}$	M1	Multiply both top and bottom by $\pm(\sqrt{3}-\sqrt{2})$.
	Reduces $\sqrt{18}$ to $3\sqrt{2}$ or $\sqrt{12}$ to $2\sqrt{3}$	M1	Allow wherever this comes – not DM.
	\rightarrow 2 $\sqrt{2}$ - $\sqrt{3}$	DM1	Dependent on first M – collects $\sqrt{2}$ and $\sqrt{3}$.
	→√8 - √3	A1 [4]	Co.
3.	(i) $32 - 80x + 80x^2$	B1 x 3	Allow 2 ⁵ for 32 (if whole series is given, mark the 3 terms).
	(ii) (k + x) × (i) Coeff. of x is −80k + 32 Equated with −8 → k = ½ or 0.5	M1 A1√ [5]	Must be 2 terms considered. For solution of $k = (-8 - a) \div (b)$
4.	Liner travels 54km or relative speed of lifeboat is 60km/h.	B1	Anywhere.
	36 (54) 45° 60 (90)		
	Correct vel./distance triangle	B1	Triangle must be correct with 54, 45°, 90 or 36, 45°, 60 or even 36, 45°, 90.
	Use of cosine rule in triangle	M1	Allow for other angles.
	$V^2 = 60^2 + 36^2 - 2.60.36\cos 45$ or $d^2 = 90^2 + 54^2 - 2.90.54\cos 45$.	A1	Unsimplified and allow for 135° as
	$V = 42.9 \text{ or } d = 64.4 \rightarrow V = 42.9$	A1 [5]	well as 45°. Co.

		The state of the s
Page 2	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0606
*		90

Elimination of x or y.
\rightarrow (0.5, 11) and (-2, 1) Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3 All correct. Condone incorrect pairing if answers originally correct. M1A1 Must be correct formula correctly applied.
\rightarrow (0.5, 11) and (-2, 1) Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3 All correct. Condone incorrect pairing if answers originally correct. M1A1 Must be correct formula correctly applied.
\rightarrow (0.5, 11) and (-2, 1) Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3 All correct. Condone incorrect pairing if answers originally correct. M1A1 Must be correct formula correctly applied.
\rightarrow (0.5, 11) and (-2, 1) Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3 All correct. Condone incorrect pairing if answers originally correct. M1A1 Must be correct formula correctly applied.
\rightarrow (0.5, 11) and (-2, 1) Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3 All correct. Condone incorrect pairing if answers originally correct. M1A1 Must be correct formula correctly applied.
Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3
Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3 M1A1 Must be correct formula correctly applied.
[6] applied.
$\Delta^2 = \begin{pmatrix} 2 & -3 \end{pmatrix} \begin{pmatrix} 2 & -3 \end{pmatrix} \begin{pmatrix} 4 & -9 \end{pmatrix}$
$\Delta^- = \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $
$A^2 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ M1A1 Do not allow M mark if all elements
are squared. If correct, allow both
marks. If incorrect, some working is needed to give M mark.
$A^{-1} = \frac{1}{2} \times \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$ B1B1 B1 for $\frac{1}{2}$, B1 for matrix.
$\begin{pmatrix} 0 & 2 \end{pmatrix}$
$B = A^2 - 4A^{-1} = \begin{pmatrix} 2 & -15 \\ 0 & -3 \end{pmatrix}$ M1A1 M mark is independent of first M.
$\begin{bmatrix} 0 & -3 \end{bmatrix}$ Allow M mark for $4A^{-1} - A^2$.
$f(x) = 4 - \cos 2x$
(i) amplitude = ±1 Pariod = 190° ar P1D1 Independent of graph De set allow
(i) amplitude = ± 1 . Period = 180° or B1B1 Independent of graph. Do not allow "4 to 5".
403.
(ii) B2,1 Must be two complete cycles. 0/2 if
not. Needs 3 to 5 marked or implied.
Needs to start and finish at
minimum. Needs curve not lines.
3+
2 20
90 180 270 360
May (00° E) and (070° E)
Max (90°, 5) and (270°, 5) B1B1 Independent of graph (90, 270 gets [6] B1). Allow radians or degrees.
[0] D1). Allow radians of degrees.

Page 3	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0606

		May .
Page 3 Mark Sci	Syllabu	
IGCSE EXAMINATION	IE 2003 0606	
8. P 35 S 36		Syllabu Barbacannana Gannana Gannan Gan
(i) O, P, S correct	B2,1	Give B1 if only one is correct.
(ii) 34, 35, 36, 37 correct	B2,1	These 2 B marks can only be awarded only if B2 has been given for part (i).
$0 \cap S = \text{odd squares} \rightarrow 4$	B1	Co.
$O \cup S$ = odd and even squares \rightarrow 49 + 5 = 54	M1A1 [7]	Any correct method. Co.
9. (i) $\log_4 2 = \frac{1}{2} \log_8 64 = 2$ $\rightarrow 2x + 5 = 9^{1.5} \rightarrow x = 11$	B1B1 M1A1	Anywhere. Forming equation and correctly eliminating "log". Co.
(ii) Quadratic in 3 ^y	M1	Recognising that the equation is
Solution of quadratic = 0	DM1	quadratic. Correct method of solving the
\rightarrow 3 ^y = 5 or -10		equation = 0.
Solution of 3 ^y = k	M1	Not dependent on first M1. Correct
y = 1.46 or 1.47	A1 [8]	method. Co. (not for log5 \div log3). Ignore ans from $3^y = -10$.

Page 4	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0606

		MAN		
•	Mark Scheme Syllabu IGCSE EXAMINATIONS – JUNE 2003 0606			
10.		25		
x 2 3 4 5 6 y 9.2 8.8 9.4 10.4 11.6 xy 18.4 26.4 37.6 52.0 69.6 x² 4 9 16 25 36 (i) Plots xy against x² or x² against xy to get a line	M1 A2,1	Syllaba IE 2003 Syllaba 0606 Knows what to do. Points accurate – single line with ruler		
c = 12 to 12.5 or -7.25 to -7.75 m = 1.55 to 1.65 or 0.62 to 0.63 xy = 1.6x ² + 12	B1 B1	Allow if y = mx + c used.		
or $x^2 = 0.625xy - 7.5$ $\rightarrow y = 1.6x + 12/x$	M1 A1	Allow if $y = mx + c$ used. Must be $xy = mx^2 + c$ or $x^2 = mxy + c$.		
(ii) Reads off at xy = 45 → x = 4.5 to 4.6	M1A1 [9]	Algebra is also ok as long as xy = 45 is solved with an equation given M1 above.		
11. $y = xe^{2x}$				
(i) $d/dx(e^{2x}) = 2e^{2x}$	B1	Anywhere – even if $dy/dx = 2x e^{2x}$		
$dy/dx = e^{2x} + x.2 e^{2x}$ sets to $0 \rightarrow x = -0.5$	M1 M1A1	or 2 e ^{2x} . Use of correct product rule. Not DM mark. Allow for stating his dy/dx = 0.		
(ii) $d^2y/dx^2 = 2 e^{2x} + [2 e^{2x} + 4x e^{2x}]$ = $4 e^{2x}(1 + x) \rightarrow k = 4$	M1A1 A1	Use of product rule needed. Allow if he reaches $4e^{2x}(1 + x)$.		
(iii) when $x = -0.5$, d^2y/dx^2 is +ve $(0.74) \rightarrow Minimum$	M1A1 [9]	No need for figures but needs correct x and correct d ² y/dx ² .		
12. EITHER				
A B X				
At A, y = 4 dy/dx = 2cosx - 4sinx dy/dx = 0 when tanx = $\frac{1}{2}$ At B, x = 0.464 or 26.6°		Anywhere. Any attempt at differentiation. Sets to 0 and recognises need for tangent. Co. Accept radians or degrees here.		

Page 5	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0606

$\int (2\sin x + 4\cos x) dx = -2\cos x + 4\sin x$ Area under curve = $[]_{0.464} - []_{0}$ $\rightarrow -(-2) = 2.$ Read area = $2 - (4 \times 0.464) = 0.144$ $(5 \text{ or } 6).$ 12. OR $\frac{dy}{dx} = \frac{1}{3} + 4x$ $\frac{dy}{dx} = \frac{1}{3} + \frac{1}{3}$ $\int \sqrt{1 + 4x} dx = (1 + 4x)^{1.5} \times \frac{2}{3} \div 4$ Area under curve = $[]^{2} - []^{0} = 4^{1}/_{3}$ Shaded area = Area of trapezium $-4^{1}/_{3} = ^{1}/_{3}$ $\int \sqrt{1 + 4x} dx = (1 + 4x)^{1.5} \times \frac{2}{3} \div 4$ Area under curve = $[]^{2} - []^{0} = 4^{1}/_{3}$ Or Area under curve = $[]^{2} - []^{0} = 4^{1}/_{3}$ Or Area under curve = $[]^{2} - []^{0} = 4^{1}/_{3}$ Or Area under curve = $[]^{2} - []^{0} = 4^{1}/_{3}$ Or Area under $[]^{2} - []^{0} = 4^{1}/_{3}$ Or Area under $[]^{2} - []^{0} = 4^{1}/_{3}$ Any attempt with trig. functions. Any attempt with rig. functions.		1	Call
Reqd area = $2 - (4 \times 0.464) = 0.144$ (5 or 6). 12. OR $dy/dx = \frac{1}{4}(1 + 4x)^{\frac{1}{4}} \times 4$ At P, m = $\frac{2}{3}$ Eqn of tangent y - $3 = \frac{2}{3}(x - 2)$ At B, x = $1^{\frac{2}{3}}$ Area under curve = $[]^2 - []^0 = 4^{\frac{1}{3}}$ Shaded area = Area of trapezium - $4^{\frac{1}{3}} = \frac{1}{3}$ Or Area under $y = \frac{2}{3}(x + \frac{1}{3}) = \frac{1}{3}$ Or Area under $y = \frac{2}{3}(x + \frac{1}{3}) = \frac{1}{3}$ Or Area under $y = \frac{2}{3}(x + \frac{1}{3}) = \frac{1}{3}$ Or Area under $y = \frac{2}{3}(x + \frac{1}{3}) = \frac{1}{3}$ Any attempt with dy/dx – not for $\sqrt{1 + 4x} = 1 + 2\sqrt{x}$. A mark needs everything. M1A1 Any attempt with dy/dx – not for $\sqrt{1 + 4x} = 1 + 2\sqrt{x}$. A mark needs everything. Not for normal. Not for "y + y ₁ " or for m on wrong side. Allow A for unsimplified. M1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. A1 co. [M1A1 A1 co. [M1A1 A1 co. [M1A2] A1 co. [M1A3 A1 co. [M1A4] A1 co. Plan mark independent of other Ms. Plan mark independent of other Ms.	,		Any attempt with trig. functions.
12. OR $dy/dx = \frac{1}{2}(1 + 4x)^{\frac{1}{2}} \times 4$ At P, $m = \frac{2}{3}$ Eqn of tangent $y - 3 = \frac{2}{3}(x - 2)$ At B, $x = 1\frac{2}{3}$ Area under curve = $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \frac{1}{3}$ Shaded area = Area of trapezium - $4\frac{1}{3} = \frac{1}{3}$ Or Area under $y = \frac{2}{3}x + 1\frac{2}{3} - 4\frac{1}{3} = \frac{1}{3}$ Or Area under $y = \frac{2}{3}x + \frac{1}{2}(x - 2)$ At Co. M1A1 Any attempt with dy/dx – not for $\sqrt{(1 + 4x)} = 1 + 2\sqrt{x}$. A mark needs everything. M1A1 Any of tor normal. Not for "y + y," or for m on wrong side. Allow A for unsimplified. Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. DM1A1 BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. BM1A1 Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included,		DM1	, ,
$dy/dx = \frac{1}{2}(1 + 4x)^{\frac{1}{2}} \times 4$ $At P, m = \frac{1}{3}$ Eqn of tangent $y - 3 = \frac{2}{3}(x - 2)$ $At B, x = 1^{\frac{3}{2}}/3$ Eqn of tangent $y - 3 = \frac{2}{3}(x - 2)$ $At B, x = 1^{\frac{3}{2}}/3$ $\int \sqrt{(1 + 4x)}dx = (1 + 4x)^{1.5} \times \frac{2}{3} \div 4$ $Area under curve = []^2 - []^0 = 4^{\frac{1}{3}}/3$ $Shaded area = Area of trapezium - 4^{\frac{1}{3}}/3 = \frac{1}{3}$ $Or Area under y = \frac{2}{3}x + 1^{\frac{2}{3}}/3 - 4^{\frac{1}{3}}/3 = \frac{1}{3}$ $Ior \int xdy = \int (\frac{1}{3}\sqrt{y^2} - \frac{1}{3})dy$ $= \frac{1}{3} - \frac{1}{3}$ $Ior \int xdy = \int (\frac{1}{3}\sqrt{y^2} - \frac{1}{3})dy$ $= \frac{1}{3} - \frac{1}{3}$ $Ior \int xdy = \int (\frac{1}{3}\sqrt{y^2} - \frac{1}{3})dy$ $= \frac{1}{3} - \frac{1}{3}$ $Ior \int xdy = \int (\frac{1}{3}\sqrt{y^2} - \frac{1}{3})dy$ $= \frac{1}{3} - \frac{1}{3}$ $Ior \int xdy = \int (\frac{1}{3}\sqrt{y^2} - \frac{1}{3})dy$ $= \frac{1}{3} - \frac{1}{3} - \frac{1}{3}$ $Ior \int xdy = \int (\frac{1}{3}\sqrt{y^2} - \frac{1}{3})dy$ $= \frac{1}{3} - \frac{1}{3} - \frac{1}{3}$ $= \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3}$ $= \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3}$ $= \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3}$ $= \frac{1}{3} - \frac{1}{$, , , , , , , , , , , , , , , , , , , ,		
Eqn of tangent $y - 3 = {}^2/_3(x - 2)$ At B, $x = 1^2/_3$ $\int \sqrt{(1 + 4x)} dx = (1 + 4x)^{1.5} \times {}^2/_3 \div 4$ Area under curve = $[]^2 - []^0 = 4^1/_3$ Shaded area = Area of trapezium - $4^1/_3 = {}^1/_3$ Or Area under $y = {}^2/_3x + 1^2/_3 - 4^1/_3 = {}^1/_3$ And Any attempt at integration with (1 + 4x) to a power. Other fin of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. M1 Plan mark independent of M marks. A1 Co. [or $\int x dy = \int (\frac{1}{4}y^2 - \frac{1}{4}) dy = y^3/12 - y/4$ area to left of curve = $[]_3 - []_1 = 1^2/_3$ shaded area = $1^2/_3 - \text{triangle} (\frac{1}{2} \cdot 2 \cdot 2 \cdot 1^1/_3) = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$ Plan mark independent of other Ms. Plan mark independent of other Ms.	B $A = \begin{cases} A = \sqrt{1+4x} \end{cases}$		
At B, $x = 1^2/_3$ m on wrong side. Allow A for unsimplified. $\int \sqrt{(1+4x)} dx = (1+4x)^{1.5} \times {}^2/_3 \div 4$ Area under curve = $[]^2 - []^0 = 4^1/_3$ Shaded area = Area of trapezium - $4^1/_3 = {}^1/_3$ Or Area under $y = {}^2/_3x + 1^2/_3 - 4^1/_3 = {}^1/_3$ Any attempt at integration with $(1+4x)$ to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. A1 co. [or $\int x dy = \int (1/_4y^2 - 1/_4) dy = y^3/12 - y/4$ [M1A1 A1 co. [M1A2 Attempt at differentiation. A1 for each term. [M1A3 Attempt at differentiation. A1 for each term. DM1A1 Attempt at differentiation and for each term. Plan mark independent of other Ms. [M1A3 Attempt at differentiation and for each term. Plan mark independent of other Ms.			$\sqrt{(1 + 4x)} = 1 + 2\sqrt{x}$. A mark needs everything.
Area under curve = $[]^2 - []^0 = 4^1/_3$ Shaded area = Area of trapezium - $4^1/_3 = ^1/_3$ Or Area under $y = ^2/_3x + 1^2/_3 - 4^1/_3 = ^1/_3$ Al (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. M1 Plan mark independent of M marks. Al (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. Al (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. Al (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. Al (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. Al (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of other Ms. Al (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. M1 All Os. Plan mark independent of other Ms. All All Os. Plan mark independent of other Ms.	At B, $x = 1^2/_3$	MIAI	m on wrong side. Allow A for
Area under curve = $[]^2 - []^0 = 4^1/_3$ DM1A1 Use of limits 0 to 2 only. Must attempt a value at 0. Shaded area = Area of trapezium - $4^1/_3 = 1^1/_3$ M1 Plan mark independent of M marks. Or Area under $y = 2^1/_3 x + 1^2/_3 - 4^1/_3 = 1^1/_3$ A1 A1 co. $[or \int xdy = \int (1/_4y^2 - 1/_4)dy = y^3/12 - y/4$ [M1A1 Attempt at differentiation. A1 for each term. area to left of curve = $[]_3 - []_1 = 1^2/_3$ shaded area = $ 1^2/_3 - \text{triangle } (1/_2 \cdot 2 \cdot 1^1/_3) = 1^1/_3 $ M1 Plan mark independent of other Ms. $ 1^1/_3 = 1^1/_$	$\int \sqrt{(1+4x)} dx = (1+4x)^{1.5} \times \sqrt{2}/3 \div 4$		(1 + 4x) to a power. Other fn of x
Area of trapezium - $4^1/_3 = 1/_3$ Or Area under $y = 2/_3x + 1^2/_3 - 4^1/_3 = 1/_3$ Al A1 co. [or $\int x dy = \int (1/_4 y^2 - 1/_4) dy = y^3/12 - y/4$ [M1A1 Attempt at differentiation. A1 for each term. area to left of curve = $[]_3 - []_1 = 1^2/_3$ shaded area = $ 1^2/_3 - \text{triangle } (1/_2 \cdot 2 \cdot 1^1/_3) = 1/_3]$ M1 Plan mark independent of M marks. A1 co. [M1A1 Attempt at differentiation. A1 for each term. DM1A1 Must be limits 1 to 3 used correctly. Plan mark independent of other Ms.		DM1A1	Use of limits 0 to 2 only. Must
$y = \frac{2}{3}x + \frac{1^2}{3} - \frac{4^1}{3} = \frac{1}{3}$ A1 A1 co. [or $\int x dy = \int (\frac{1}{4}y^2 - \frac{1}{4}) dy = y^3/12 - y/4$ [M1A1 Attempt at differentiation. A1 for each term. area to left of curve = $\begin{bmatrix} 3 - \begin{bmatrix} 1 \end{bmatrix} = \frac{1^2}{3}$ by Shaded area = $\frac{1^2}{3} - \text{triangle } (\frac{1}{2}.2.1^{\frac{1}{3}})$ $= \frac{1}{3} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ M1 A1 A1 Co. Must be limits 1 to 3 used correctly. Plan mark independent of other Ms. A1]		M1	Plan mark independent of M marks.
= $y^3/12 - y/4$ [M1A1 Attempt at differentiation. A1 for each term. area to left of curve = [] ₃ - [] ₁ = $1^2/_3$ by shaded area = $1^2/_3 - \text{triangle } (\frac{1}{2}.2.1^{\frac{1}{3}})$ [M1A1 Attempt at differentiation. A1 for each term. Must be limits 1 to 3 used correctly. Plan mark independent of other Ms. A1]		A1	A1 co.
shaded area = $1^2/_3$ - triangle (½.2.1 $^1/_3$) M1 Plan mark independent of other Ms. A1]	_ ` ` ` ` , ` , ` , ` , ` , ` , ` , ` ,	-	=
$= \frac{1}{3}$ A1]		DM1A1	Must be limits 1 to 3 used correctly.
	$1^2/_3$ – triangle ($\frac{1}{2}$.2.1 $\frac{1}{3}$)	A1]	Plan mark independent of other Ms.

DM1 for quadratic equation. Equation must be set to 0.

Formula - must be correctly used. Allow arithmetical errors such as errors over squaring a negative number.

Factors – must be an attempt at two brackets. Each bracket must then be equated to 0 and solved.

Completing the square – must result in $(x\pm k)^2$ = p. Allow if only one root considered.

www.papaCambridge.com

JUNE 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

ADDITIONAL MATHEMATICS
Paper 2

		Mary
Page 1	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0606
		90

	IGCSE EXAMINATIONS – JUNE 2003 0606	X	3
			S
1	Put $x = -b/2$ (or synthetic or long division to remainder) $\Rightarrow 3b^3 + 7b^2 - 4 = 0 \text{ AG}$	M1	ACAI.
	Search $\Rightarrow b = -1$ [or $b = -2$] (1 st root or factor)	M1	A1
	Attempt to divide $\Rightarrow 3b^2 + 4b - 4$ (or $3b^2 + b - 2$) or further search $\Rightarrow b = -2$ [or $b = -1$]	M1	
[7]	Factorise (or formula) [3 term quadratic] or method for 3^{rd} value $\Rightarrow b = -2$, -1 or $^2/_3$	DM1	A1
2 (i)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \pm (9\mathbf{i} + 12\mathbf{j})$	M1	
	Unit vector = $\overrightarrow{AB} \div \sqrt{9^2 + 12^2} = \pm (0.6\mathbf{i} + 0.8\mathbf{j})$ [Accept any equivalent unsimplified version of column vectors, $\pm \begin{pmatrix} 9 \\ 12 \end{pmatrix}$, $\pm \begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}$]	M1	A1
(ii)	$\overrightarrow{AC} = {}^{2}/_{3}\overrightarrow{AB} = 6\mathbf{i} + 8\mathbf{j}$ (or $\overrightarrow{CB} = {}^{1}/_{3}\overrightarrow{AB} = 3\mathbf{i} + 4\mathbf{j}$)	M1	
[6]	$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ (or $\overrightarrow{OB} - \overrightarrow{CB}$) = 12 i + 5 j (or equivalent)	M1	A1
3	$\int (3x^{0.5} + 2x^{-0.5}) dx = 3x^{1.5}/1.5 + 2x^{0.5}/0.5$		
	(one power correct sufficient for M mark)	M1 A	.1 A1
	$\int_{1}^{8} = (2 \times 8\sqrt{8} + 4\sqrt{8}) - (2 + 4)$ Must be an attempt at integration	M1	
[6]	Putting $\sqrt{8} = 2\sqrt{2}$ (i.e. one term converted $\sqrt{2}$ to $\sqrt{2}$) \Rightarrow -6 + 40 $\sqrt{2}$	B1√	A1
4	$16^{x+1} = 2^{4x+4}$ or 16×2^{4x} or 16×4^{2x} or 16×16^{x} $20 (4^{2x}) = 20(2^{4x})$ or $5(2^{4x+2})$ or 20×16^{x}	B1	B1
	$2^{x-3} 8^{x+2} = 2^{x-3} 2^{3x+6} = 2^{4x+3} \text{ or } 8 \times 2^{4x} \text{ or } 8 \times 4^{2x} \text{ or } 8 \times 16^{x}$	B1	
[4]	Cancel 2^{4x+2} or 2^{4x} and simplify \Rightarrow 4.5 or equivalent		B1
(i)	$f(0) = \frac{1}{2}$ $f^2(0) = f(\frac{1}{2}) = (\sqrt{e + 1})/4 \approx 0.662 \text{ (accept 0.66 or better)}$	B1 M	1 A1
(ii)	$x = (e^y + 1)/4$ $\Rightarrow e^y = 4x - 1$ $\Rightarrow f^1 : x \mapsto \ln(4x - 1)$	М	1 A1
iii)	Domain of f^{-1} is $x \ge \frac{1}{2}$ Range of f^{-1} is $f^{-1} \ge 0$	B1	В1
[7]			

		my
Page 2	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0606

	IGCSE EXAMINATIONS – JUNE 2003 0606	1 3	03-
6 (i)	$x^2 - 8x + 12 = 0$ Factorise or formula \Rightarrow Critical values $x = 2, 6$	M1	Car
(.,	$x^2 - 8x + 12 > 0 \qquad \Rightarrow \{x : x < 2\} \cup \{x : x > 6\}$		White
(ii)	$x^2 - 8x = 0$ \Rightarrow Must be an attempt to find 2 solutions $x^2 - 8x < 0$ $\Rightarrow \{x : 0 < x < 8\}$	M1 A1	Oa Cambridge . Co
(iii) [7]	Solution set of $ x^2 - 8x + 6 < 6$ is combination of (i) and (ii) $\{x: 0 < x < 2\} \{x: 6 < x < 8\}$	B1 (one each rang	B1 for
7 (i)	6! = 720	B1	
	M ⇒ 5! = 120	M1	A1
(iii)	4! 48	M1	A1
(iv)	6!/4! 2! = 15 Accept $_6C_4$ or $_6C_2$ = 15	B1	
(v)	5!/3! 2! = 10 (or, answer to (iv) less ways M can be omitted) (Listing – ignoring repeats \geq 8 [M1] \Rightarrow 10 [A1])	M1	A1
8 (i)	Collect $\sin x$ and $\cos x$ $\Rightarrow \sin x = 5 \cos x$ Divide by $\cos x$ $\Rightarrow \tan x = 5 (\text{accept }^{1}/_{5} - \text{for M only})$ $x = 78.7^{\circ}$ or (258.7°) i.e. 1^{st} solution + 180°	M1 M1 A1	A 1√
(ii)	Replace $\cos^2 y$ by $1 - \sin^2 y$ $3\sin^2 y + 4\sin y - 4 = 0$ Factorise (or formula) (3 term quadratic) $\Rightarrow \sin y = \frac{2}{3}$ (or -2)	B1 M1	
[8]	y = 0.730 (accept 0.73 or better) or (2.41) i.e. π (or $\frac{22}{7}$) less 1 st solution	A1	A 1√
9 (i)	$\int (12t - t^2) dt = 6t^2 - \frac{1}{3}t^3$	M1	A1
	From $t = 0$ to $t = 6$ distance = $\int_0^6 = 144$		A1
	Max. speed = 36 \Rightarrow from $t = 6$ to $t = 12$ distance = 36 x 6 (= 216)		B1
	During deceleration distance = $(0^2 - 36^2) \div 2(-4) = 162$ Area of Δ is fine for M mark but value of t must be from constant acceleration not $12 - 2t = \pm 4$	N44	
	Total distance = 144 + 216 + 162 = 522	M1	A1
(ii)	v ————————————————————————————————————		
	t	B2, 1	1, 0
[8]			

Page	Mark Scheme Syllab	17.0
	IGCSE EXAMINATIONS – JUNE 2003 0606	100
	$\frac{(x-2)2-(2x+4)1}{(x-2)^2} = \frac{-8}{(x-2)^2} \Rightarrow k = -8$ be correct formula for M mark (accept $\frac{-8}{(x-2)^2}$ as answer)	M1 A7 Cannon M1 A7
ii) Whe	or $y = 0$, $x = -2$ (B mark is for <i>one</i> solution only) NB. $x = 0$, $y = -2$	B1

10 (i)	dy	(* 2)2 (2* 11)1 _	
	$\frac{1}{dx}$	$(x-2)^2$	$\frac{1}{(x-2)^2}$ \rightarrow $\kappa = -6$

(ii) When
$$y = 0$$
, $x = -2$ (B mark is for *one* solution only) NB. $x = 0$, $y = -2$

$$m_{tangent}$$
 = -8/16 = -1/2 \Rightarrow m_{normal} = +2 (M is for use of m_1 m_2 = -1, whether numeric or algebraic)

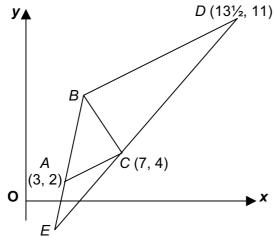
M1

В1

Equation of normal is
$$y - 0 = 2(x + 2)$$
 (candidate's m_{normal} and $[x]_{y=0}$ for M mark)

M1 A1

(iii) When
$$y = 6$$
, $x = 4$


$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = \frac{-8}{(x-2)^2} \times 0.05 = \frac{-8}{4} \times 0.05 = -0.1 \text{ (accept } \pm \text{)}$$

M1 A1√

i.e.
$$\left[\frac{dy}{dx}\right]_{x=4}$$
 x 0.05 for M mark.

 $\sqrt{}$ is for error in k only. (Condone S $\approx \frac{dy}{dx}$ x S) [9]

EITHER 11

$$m_{BD} = \frac{1}{2}$$

B1√

$$m_{BC} = -2$$

B1√

Equation of *BD* is
$$y - 11 = \frac{1}{2}(x - 13.5)$$
 i.e. $4y = 2x + 17$

M1

Equation of *BC* is
$$y - 4 = -2(x - 7)$$
 i.e. $y = -2x + 18$

i.e.
$$y = -2x + 18$$

M1

Solving
$$y = 7$$
, $x = 5.5$

(i) $m_{AC} = (4 - 2)/(7 - 3) = \frac{1}{2}$

M1 **A1**

		my
Page 4	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0606
		00

	IGCSE EXAMINATIONS – JUNE 2003 0606	200
	(ii) $\frac{\Delta EBD}{\Delta EAC}$ = (ratio of corresponding sides or <i>x</i> - or <i>y</i> - steps) ² = 4/1 Quadrilateral <i>ABDC</i> / Δ <i>EBD</i> = 3/4	M1 A1 M1 A1
[10]	[Or, find $E(1/2, -3)$ and then use array method to find <i>one</i> of: area quadrilateral $ABDC = 22.5$ area $\Delta EBD = 30$ Find other area and hence ratio = 3/4 or equivalent]	M1 A1 A1
11	OR O r A 6 7 P 5 Q	
	(i) $(r+6)^2+5^2=(r+7)^2$	M1
	Solve $\Rightarrow r = 6$	M1 A1
	$tan AOB = 5/12$ $AOB = 0.395 \text{ or } 22.6^{\circ}$	M1
	Length of arc <i>AB</i> = 6 x 0.395 = 2.37 or better	M1 A1
	(ii) Sector <i>AOB</i> = ½ x 6 ² x 0.395 = 7.11	M1
	Shaded area = ½ x 5 x 12 - 7.11	M1
	All figures in sector and triangle correct $\sqrt{}$	A1√
[10]	22.9 or better	A1

7003 Pandridge Com

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the June 2003 examination.

	maximum	minimum mark required for grade:		
	mark available	Α	С	E
Component 1	80	54	29	20
Component 2	80	60	34	23

Grade A* does not exist at the level of an individual component.