www.papacambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2005 guestion paper

0606 ADDITIONAL MATHEMATICS

0606/02

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 guestion papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.papacambridge.com **Grade thresholds** taken for Syllabus 0606 (Additional Mathematics) in the June 2005 examination.

	maximum	minimum	mark required	for grade:
	mark available	А	С	Е
Component 2	80	61	35	25

Grade A* does not exist at the level of an individual component.

Mark Scheme Notes

Marks are of the following three types:

- www.papacambridge.com Method mark, awarded for a valid method applied to the problem. Method Μ marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise: and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

The following abbreviations may be used in a mark scheme or used on the script

- www.papaCambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness - usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

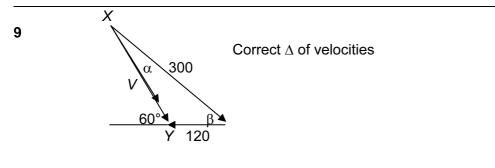
June 2005

IGCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02


ADDITIONAL MATHEMATICS PAPER 2

BLANK PAGE

Page	1 Mark Scheme Syllab IGCSE – June 2005 0606	us · Ag	
		a Ca	Bi
(i)	$dy/dx = (2x - 1)^{-2} \times (-8) \times 2$	из В3, 2, 1	OF
(ii)	$dy/dt = [dy/dx]_{x = -0.5} \times dx/dt \implies 0.2 = -4 \times dx/dt \implies dx/dt = -0.05$	M1 A1	[5]
(i)	$(300 \ 40) \binom{12}{5}$ or $(12 \ 5) \binom{300}{40}$ = (3800)	B1 B1	
(ii)	$ \begin{pmatrix} 180 & 40 \\ 400 & 150 \end{pmatrix} \begin{pmatrix} 10 \\ 4 \end{pmatrix} \text{ or } (10 4) \begin{pmatrix} 180 & 400 \\ 40 & 150 \end{pmatrix} = \begin{pmatrix} 1960 \\ 4600 \end{pmatrix} \text{ or } (1960 4600) $	M1 A1	
(iii)	3800 + 1960 + 4600 = 10 360	B1	[5]
	x + y = 12	B1	
	$AP^2 - BP^2 = AB^2 \Rightarrow x^2 - y^2 = 60$	M1 A1	
	Solve for y [via $(12 - y)^2 - y^2 = 60$ or using $x - y = 5$] BP = 3.5	M1 A1	[5]
	$g^{2}(2.75) = g(2.5)$ or via $[2(2x - 3) - 3]_{x=2.75} = 2$	M1 A1	
	$g^{-1}(x) = \frac{x+3}{2}$ $g^{-1}f(x) = \frac{\sin x+3}{2}$ $x = \pi/2$	M1 M1 A1	
			[5]
(i)	$\frac{d}{dx} (x \ln x - x) = \ln x + (x \times 1/x) - 1 (= \ln x)$	M1 A1	
(ii)	$\int \ln x dx = x \ln x - x$	M1	
	y = 0, x = 1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{1}^{3} = (3\ln 3 - 3) - (0 - 1) \approx 1.30$	B1 M1 A1	

						4	Mm, Papaca; B1 B2, 1, 0√	
Page	2			Scheme		Syllabus	an l	
			IGCSE – .	June 2005		0606	TaCa!	nx l
6 (i)	$d/dx (e^{2x})$		0v. 0v				В1	ridge
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{e}^{2x}}{\sin x}\right)$	$=\frac{\sin x(2e)}{2e}$	$e^{2x}) - e^{2x} \cos x$ $\sin^2 x$	$\frac{2}{2}$ or (sin x) ⁻¹ (2e ²)	() + $e^{2x} (\sin x)$	⁻² (-cos <i>x</i>)	B2, 1, 0√	
	= 0 when 2	2sin <i>x</i> – o	$\cos x = 0$				B1	
(ii)	tan <i>x</i> = 0.5	⇒	<i>x</i> ≈ 0.464	(26.6°)			M1 A1	[6]
7	Express ir [or <i>x</i> lg125	-	of 5 \Rightarrow 5 ^{3x} = 5 ylg 5]	5 ^{2+y}			B2, 1, 0	
	Express in [or <i>x</i> lg7 –			$= 7^0 \text{ or } 7^x = 7^{2y}$			B2, 1, 0	
		= 2 + y = 2y		x = 1.40 + 0.70 y 5 x - 1.69 y = 0]		$\Rightarrow x = 0.8$ y = 0.4		[6]
8 (i)	Insert k in 6 k in $C \cap I$ 3 k in $C' \cap$	׳כ					B1 B1 B1	
	n (C∪D) :	= 5/6 n(<i>ɛ</i>	s) = 10 k \Rightarrow Ins	sert 2k in (C' \cap D'	<i>'</i>)		M1 A1√	
(ii)	11 <i>k</i> = 165	000 ⇒	n(ɛ) = 12k = ′	180 000			M1 A1	[7]

B1

 $\sin \alpha = (120 \sin 120^\circ)/300 \Rightarrow \alpha \approx 20.3^\circ \qquad \qquad [\beta \approx 39.7^\circ] \qquad \textbf{M1 A1}$

 $V = 300 \sin 39.7^{\circ}/\sin 120^{\circ}$ [or 120 sin 39.7°/sin 20.3° or cos rule] ≈ 221 M1 A1 $T \approx 720/221 \approx 3.24 \sim 6$ DM1 A1

[**or** via components 300 sin β = V cos 30°, 300 cos β = V cos 60° + 120 Square, add and solve for V, T = 12/($\sqrt{22}$ –1)]

[7]

Page	93	Mark SchemeSyllalIGCSE – June 2005060	6 Anaca	
10 (a)	Repla	ace $\tan^2 x$ by $\sec^2 x - 1$	hum, papa 6 B1 M1	non
	4sec ²	$^{2}x + 15 \sec x - 4 = 0 \implies (4 \sec x - 1)(\sec x + 4) = 0$	M1	
	(cos .	$x = 4$), cos $x = -0.25 \Rightarrow x = 104.5^{\circ}$ or 255.5°	A1 A1 √	
(b)	tan⁻¹5	5 ≈ 1.37 (or 78.7°), or any correct value of tan ⁻¹ (–5)	B1	
		2 correct values, or the specific value, of tan ⁻¹ (–5) = 1.77 .3°), 4.91 (281.3°), 8.05 (461.3°)	B1	
	Add 2 only]	2 [or 114.6°], divide by 3 [consistent] $y \approx 3.35$ [one answer	M1 A1	[8]
11 (a)	(i)	$32 + 80x + 80x^2 + 40x^3 + 10x^4 + x^5$ All coefficients to be resolved	B3, 2, 1	
	(ii)	$x = \sqrt{3}$ \Rightarrow $x^3 = 3\sqrt{3}, x^5 = 9\sqrt{3}$	B1 B1	
		$32 + 80\sqrt{3} + 240 + 120\sqrt{3} + 90 + 9\sqrt{3} = 362 + 209\sqrt{3}$	B1	
(b)	+ x	$(4(-4/x)^3 \times {}_7C_4 (or {}_7C_3) = 35 = -2240$	M1 A1 A1	[9]

Page	4 Mark Scheme S	Syllabus ** S
	IGCSE – June 2005	0606 903
		and
12 E	$DC = BD$ [or D (5, 6) midpoint of C (x , y), B (8, 8)] \Rightarrow C is (2, 4)	Syllabus 0606 M1 A1 B1√ B1√
E	$m_{DE} = m_{AC} = 7/4$ $m_{CE} = -1/m_{AC} = -4/7$	B1√ B1√
	Equation of <i>DE</i> is $y - 6 = 7/4 (x - 5)$	A1 √
	Equation of <i>CE</i> is $y - 4 = -4/7 (x - 2)$	M1(either) $A1$
	Solve for $E \implies x = 3.4, y = 3.2$	M1 A1
	Complete method for entire area \rightarrow 15.6	M1 A1 [11
12 (i) O	$\angle BOD = 2\sin^{-1} 0.8 \approx 1.855 \ (106.3^{\circ}) \text{ or } \angle BOE = 0.927 \ (53.1^{\circ})$	M1 A1
0	∠BAD = ½ ∠BOD ≈ 0.927 (53.1°) or ∠ BAE = 0.464 (26.6°)	M1 A1
	[or O to $BD = \sqrt{(10^2 - 8^2)} = 6$, ∠BAD = 2tan ⁻¹ 8/16]	
	<i>AB</i> = 8/sin(½ ∠ <i>BAD</i>) ≈ 17.9 [or via $\sqrt{(8^2 + 16^2)}$]	M1 A1
(ii)	Perimeter = (10 × 1.855) + (17.89 × 0.927) [or degrees × π /180]	≈ 35.1 M1 A1
(iii)	Use of $\frac{1}{2} r^2 \theta$ or $\frac{1}{2} r^2 (\theta - \sin \theta)$	M4
	(radians or degrees × $\frac{\pi}{180}$)	M1
	Complete plan	M1
	Segment $BCDB = \frac{1}{2} \cdot 10^2 \times 1.855 - \frac{1}{2} \cdot 16 \times 6 \approx 44.75$ Segment $BEDB = \frac{1}{2} \cdot 17.9^2 \times 0.927 - \frac{1}{2} \cdot 16 \times 16 \approx 20.3 \times 5$ Area	≈ 24.2~5 A1 [11
	Segment $BEDB = \frac{1}{2} \cdot 17.9 \times 0.927 - \frac{1}{2} \cdot 16 \times 16 \approx 20.3 \times 5$ Area	≈ 24.2~5 AT []*