UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the May/June 2007 guestion paper

0606 ADDITIONAL MATHEMATICS

0606/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			· · · ·	
Page 2	Mark Scheme	Syllabus	Q.	er
	IGCSE – May/June 2007	0606	Sp.	

Mark Scheme Notes

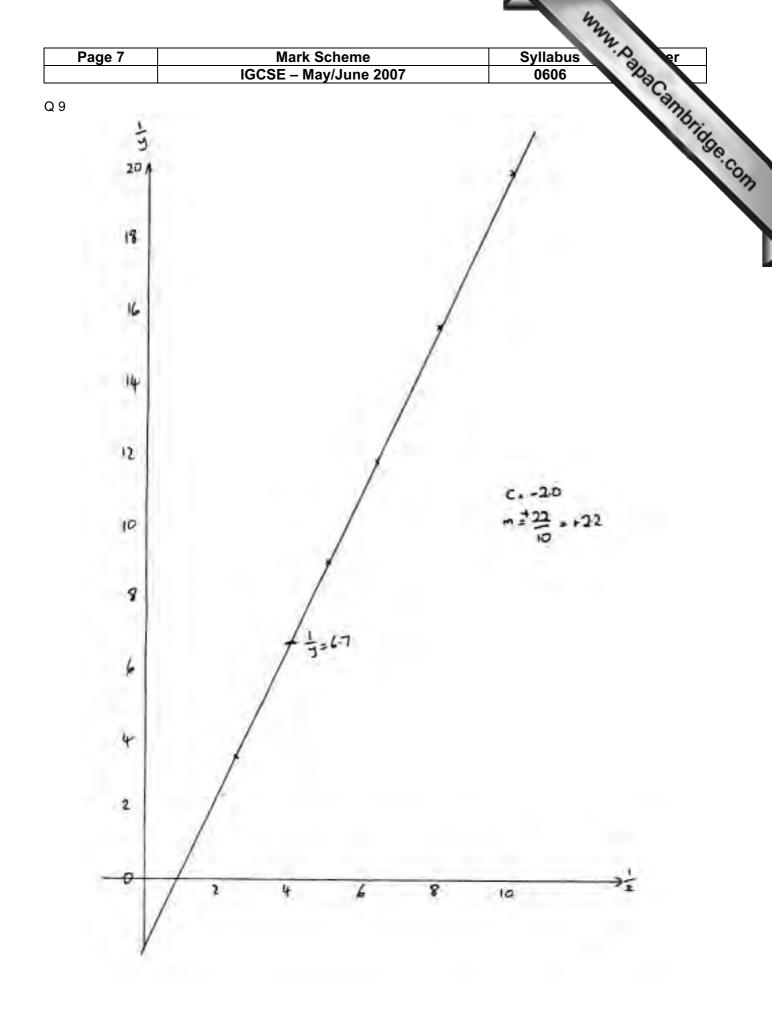
Marks are of the following three types:

- cambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Page 3 Mark Scheme		·.A
	IGCSE – May/June 2007	Syllabus 0606	80

The following abbreviations may be used in a mark scheme or used on the scripts:

- acambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)


Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme IGCSE – May/June			Syllabus Approximation of the second
. (i)		B1 [1]	со	Syllabus 0606 Phacen
(ii) $A \cap B'$	$\cap C$	B1 [1]	со	
(iii) (X∪Y)), X, O Å,	B1 B1 [2]	co co.	
If $x = 4$, $dy/dx =$ Perpendicular h If $x = 4$, $y = 6$		M1 A1 M1 B1 A1 [5]	co. (ma Indeper	a must be completely correct ay be implied) ndent of first M mark. here in the question.
$\rightarrow x^2 - 10x + 1$ $\rightarrow \rightarrow (2, -6) a$	$2x^{2} - 23x + 2y + 50 = 0$ $6 = 0 \text{ or } y^{2} + 3y - 18 = 0$ and (8, 3) where $\rightarrow P(4, -3)$	M1A1 DM1 A1 M1A1√ [6]	Correc	lete elimination of x/y for M. et method of solution of quad. alid method.
	by $2x - 5x^2$ u' term or +320 from 'u ² ' term $0(2x - 5x^2)^2$	B2,1,0 [2] M1 B1 M1 A1 $$ [4]	Recog Co (m Needs t	ost for each error nises and uses the link. hay be implied by answer) to look at 2 terms for x^2 is original expansion.

Page 5	Mark Scher	ne		Syllabus A	1
IGCSE – May/Ju		ne 2007		0606	20
					3
$v = \sqrt{r}$	9			Syllabus 0606 all these B marks if given re powers of x	1
$y = \sqrt{x} + \frac{1}{\sqrt{x}}$					
(i) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$	9	B1 B1			
(1) $\frac{dx}{dx} = \frac{1}{2\sqrt{2}}$	$\frac{1}{x} - \frac{1}{2x^{\frac{3}{2}}}$		-	all these B marks if given	ı as
d^2y –	1 27	B1 B1	negativ	ve powers of x	
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2} = \frac{-4}{4}$	$\frac{1}{r^{\frac{3}{2}}} + \frac{1}{4r^{\frac{5}{2}}}$	DIDI			
		[4]			
(ii) If $x = 9$	$\frac{\mathrm{d}y}{\mathrm{d}y} = 0$	D1 [1]	Anguro	r giyan	
	, dx	B1 [1]	Answe	r given.	
	12			• 2	
(iii) If $x = 9$,	$\frac{d^2 y}{dx^2} > 0$. Minimum	M1 A1	Looks	at sign of $\frac{d^2 y}{dx^2}$. Needs al	1
	dx ²			dx ² for the A mark.	
		[2]	concer	for the A mark.	
(i) In 1.8s,	alien goes 27 cm up.	B1			
	nissile goes 39 up.	B1			
But alien	starts at 12 up.				
	-27 = 12	M1 A1	Equate	s 2 vertical displacements	
		[4]	-	-	
· /	alien goes 72 across missile goes 1.3k	B1			
III 1.5 S,	missile goes 1.5k	DI			
72 = 1.3	$k+46 \rightarrow k=20.$	M1 A1	Equate	s 2 horizontal displaceme	nts.
		[3]			
(a) $5^{x+1} = 8$	$3 + 4(5^{-x}) \rightarrow 5u = 8 + 4u^{-1}$	B1 B1	B1 for	$5u$ and B1 for $4u^{-1}$	
	-8u-4=0	M1	Solutio	n of a quadratic.	
	2 or -0.4 5 ^x = 2 $x = 1a2 \pm 1a5$	M1 M1		for any soln of $5^x = k$.	
$\rightarrow x =$	$5^{x} = 2 \rightarrow x = \lg 2 \div \lg 5$ $= 0.431$	A1	co.	·	
		[5]			
(b) $\log(p - p)$	$(-q) = \log p - \log q$				
	$= \log (p/q)$	B1	co.		
p - q =	p/q	M1		ating lg + good algebra.	
$\rightarrow p$	$\underline{q^2}$	Al	co.		
$\rightarrow p$	q1		0.		
		[3]			
(a) $1 + 5 cc$	$\cos 3x = 0$				
$\cos 3x = -$	$-0.2 \qquad 3x = \cos^{-1}(-0.2)$	M1		up cos before ÷ 3	
$\rightarrow x =$	0.59 or 1.50	A1 A1 [3]	co.co.		
(b) sec v +	$5 \tan y = 3 \cos y.$	[2]			
	$z'\cos y$ and $x \cos y$.	M1		both of these.	
uses cos	$c^2 = 1 - \sin^2$	M1 DM1		correct link.	
	$^{2}y + 5\sin y - 2 = 0 + \text{solution}$	DM1 A1 A1√		n of quadratic for 180 – (first ans)	
$\rightarrow \sin y$	$= \frac{1}{3}$ $y = 19.5^{\circ}$ and 160.5°.	[5]		()	

0	Mark Scheme IGCSE – May/June 2007		
			0606 23
1/x 10 8 6.25 5 2.5 $1/y$ 20 15.6 11.8 9.0 3.5	M1 A2,1,0 [3]	Knows wha Accuracy.	Syllabus 0606 t to do.
ii) Gradient 2.2 (± 0.05) Intercept = $-2(\pm 0.1)$	B1 B1	Within give	n range – graph needed
$\frac{1}{y} = 2.2 \cdot \frac{1}{x} - 2$	M1	Uses $Y = m$	X + c
$\rightarrow y = \frac{x}{2.2 - 2x}$	A1√ [4]	Correct forr	n with his m and c .
(iii) $y = 0.15$ $1/y = 6.7 \rightarrow 1/x = 4$ $\rightarrow x = 0.254 \ (\pm 0.010)$	M1 A1 [2]	Uses 1/y and equation fro co within ra	
(i) $AC = \cos^{-1}4/5 = 0.6435$ rads $BCE = 2 \times BAC = 1.287$	M1 A1 [2]	Complete m co – answer	nethod inc radian use. 9 given.
(ii) arc $BD = 8 \times 0.6435 = (5.148)$ arc $BE = 5 \times 1.287 = (6.435)$ DE = 10-8	M1 B1	Any use of Anywhere	$s=r\theta$
\rightarrow Perimeter = sum of these = 13.6 m.	DM1 A1 [4]	Sum of thre	e parts. co.
ii) Area of $\triangle ABC = 3 \times 4$ or $\frac{1}{2}ab\sin C = 12$ Area of sect $CBE = \frac{1}{2} \times 25 \times 1.287 = (16.09)$ Area of sect $ABD = \frac{1}{2} \times 64 \times 0.6435 = (20.59)$	M1 M1	Correct met Any use of	thod for triangle. $A = \frac{1}{2}r^2\theta$
$\rightarrow \text{ shaded area} = 12+16.09-20.59$ $\rightarrow 7.50 \text{ m}^2$	M1 A1 [4]	Must be linl Correct to 3	ked correctly. Not DM.

	heme	Syllabus
IGCSE – May/	June 2007	0606
EITHER		
De y = Brins henry		Syllabus 0606 Billione Billion
(i) $dy/dx = 3\cos x - 4\sin x$ = 0 when $3\cos x - 4\sin x = 0$ $\tan x = \frac{3}{4}$	M1 A1 DM1 DM1	Attempt at differentiation. co. Sets differential to 0. Arrives at $tan\theta = k$.
	A1 [5]	Both <i>x</i> and <i>y</i> needed.
(ii) $A = \int_{0}^{\frac{\pi}{2}} 3\sin x + 4\cos x.dx$	M1	Any attempt to integrate
= $[-3\cos x + 4\sin x]$ = $[0+4]-[-3+0]$	A1 A1 DM1	Each term. Correct use of limits – DM0 if "0" left
$\rightarrow 7$	A1 [5]	со
OR $y = \frac{12}{(3x+2)^2}$		
(i) $dy/dx = -24 \times (3x+2)^{-3} \times 3$ When $x = 0$, $dy/dx = -9$ At <i>A</i> , $x = 0$ and $y = 3$	B1 B1 B1	For $-24 \times (3x+2)^{-3}$, for $\times 3$ co.
$\rightarrow B: x = \frac{1}{3}$	B1 [4]	со
(ii) $A = \int_{0}^{1/3} \frac{12}{(3x+2)^2} dx$	M1	Attempt needed to integrate
= $[-12(3x+2)^{-1} \div 3]$ = $-4/32 = \frac{2}{3}$	A1 A1 DM1	For $-12(3x+2)^{-1}$). For $\div 3$. Not given if bottom limit ignored.
Area of triangle = $\frac{1}{2} \times 3 \times \frac{1}{3} = \frac{1}{2}$	M1	Anywhere.
\rightarrow $A = 1/6$	A1 [6]	со