UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

				_
Page 2	Mark Scheme: Teachers' version	Syllabus	S.	6
	IGCSE– October/November 2009	0606	Do	

Mark Scheme Notes

Marks are of the following three types:

- ambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus Syllabus
	IGCSE– October/November 2009	0606

The following abbreviations may be used in a mark scheme or used on the scripts:

- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme: Teacher IGCSE– October/Nover		Syllabus Apper 0606
1		$+7a^{2} + 16 = 0$ $a^{3} = -8, a = -2$	M1 A1	Syllabuser06060.000M1 for use of $x = a$ and equate maybe implied0.000M1 for substitution of $x = -\frac{1}{2}$ into their
((ii) $2\left(-\frac{1}{2}\right)^3$	$-7\left(-\frac{1}{2}\right)^2 - 14\left(-\frac{1}{2}\right) + 16$	[2] M1	
	= 21		A1 [2]	expression or $f(x)$
2	(i) $\begin{pmatrix} 6 & 3 & 1 \\ 3 & 2 & 4 \end{pmatrix}$	(ii) $2 \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 43 \\ 32 \end{pmatrix}$	B1, B1	B1 for each matrix, must be in correct order
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 2\\ 3\\ 3\\ 0\\ 7 \end{array} \begin{pmatrix} 5\\ 3\\ 2\\ 1 \end{pmatrix} = \begin{pmatrix} 43\\ 32\\ 35\\ 22 \end{pmatrix} $	B2, 1, 0 [2]	-1 for each error
	$4(2k+1)^2 = 4(k^2+3k-1)^2 = $		M1 A1	M1 for use of $b^2 - 4ac'$ Correct quadratic expression
1	eading to $k = \frac{1}{2}$	$\frac{1}{4}, -1$	M1 A1 [4]	M1 for correct attempt at solution A1 for both values
`	$(13 - 3y)^2 + 3y$		M1	M1 for eliminating one variable
6 (($ (\text{or } x^2 + \frac{(13 - x)^2}{3}) $ $ (6(2y^2 - 13y + 2)^2) $ $ (6(2y^2 - 13y + 2)^2) $ $ (7(2x^2 - 13x)^2) $ $ (7(2x^2 - 13x)^2) $ $ (7(2x - 10)^2) $ $ (7(2x - 10)$	(21) = 0 (2 + 20) = 0) = 0	A1 DM1	A1 for correct quadratic DM1 for correct attempt at solving quadratic
y	$v = 3 \text{ or } \frac{7}{2} \left(x = \right)$	$=\frac{5}{2}$ or 4	A1,A1	A1 for each correct pair
($(\text{or } x = 4 \text{ or } \frac{5}{2} \Big)$	$\left(y = \frac{7}{2} \text{ or } 3\right)$	[5]	
5	(i) $(3+\sqrt{2})^2$	$+\left(3-\sqrt{2}\right)^2=22$	M1	M1 for use of Pythagoras Use of decimals M1, A0
	$AC = \sqrt{22}$	2	A1 [2]	
((ii) $\tan A = \frac{3}{3}$	$\frac{-\sqrt{2}}{+\sqrt{2}}$	M1	M1 for correct ratio
	$\frac{\left(3-\sqrt{2}\right)\left(3}{\left(3+\sqrt{2}\right)\left(3\right)}$	$\left(\frac{6}{3} - \sqrt{2}\right) = \frac{11 - 6\sqrt{2}}{7}$	M1, A1	M1 for rationalising 2 term denominator
			[3]	

							32
	Page	9 5	Mark Scheme: Teacher IGCSE– October/Nover				Syllabus of er 0606
							2000 No.
6	(3	$(x^2 - 10x - 3x + 2)(x - 3x $	(-4) = 0	M1		M1 for a	Syllabus 0606 attempt to solve quadrat ritical values hrough on their critical values.
	cr	ritical valu	$1 = -\frac{2}{3}, 4$	A1		A1 for c	ritical values
	Α	$= \{x : -\frac{2}{3}\}$	$x \leq x \leq 4$	√A1	[3]	Follow t	hrough on their critical values.
		$= \{x : x \ge 0 \\ \cap B = \{x\}$	= 3 : 3 $\leq x \leq 4 $	B1 B1	[2]		alues of <i>x</i> that define <i>B</i> . are of fortuitous answers)
7	(i) ¹³	$C_8 = 1287$	7	M1,	A1 [2]	M1 for c	correct C notation
	6	teachers, teachers,	1 student : 6 2 students ${}^{7}C_{6} \times {}^{6}C_{2}$: 105 3 students ${}^{7}C_{5} \times {}^{6}C_{3}$: 420	B1 B1 B1 B1	[4]		
8	(i) W	When $t = 0$, <i>N</i> = 1000	B1	[1]		
	(ii) $\frac{d}{d}$	$\frac{\mathrm{l}N}{\mathrm{d}t} = -10$	$00ke^{-kt}$	M1		M1 for d	lifferentiation
	w]	when $t = 0$,	$\frac{\mathrm{d}N}{\mathrm{d}t}$ = -20 leading to	DM	1	DM1 for	t use of $\frac{\mathrm{d}N}{\mathrm{d}t} = \pm 20$
	<i>k</i> =	$=\frac{1}{50}$		A1	[3]		
		00 = 1000		M1		M1 for using ha	attempt to formulate equation
	<i>t</i> =	$=-50\ln\frac{1}{2}$	leading to 34.7 mins	M1 A1	[3]	M1 for a	of fortuitous answers)
9	(i) 20	0 × -2(1 -	$(-2x)^{19}$	B1,E	31 [2]	B1 for 2 B1 for -2	0 and $(1 - 2x)^{19}$ 2 provided $(1 - 2x)^{19}$ is present
	(ii) x^2	$\frac{1}{2} + 2x \ln x$	1 <i>x</i>	M1			attempt to differentiate a product.
	IS	ŚŴ		B1 A1		B1 for $\frac{1}{x}$	ther terms correct
		$(2 \sec^2 (2$	$(x+1)) - \tan(2x+1)$		[3]		
		SW	$\frac{(x+1)(x+1)}{x^2}$	M1 B1 A1	[3]	B1 for d	attempt to differentiate a quotient. ifferentiation of tan $(2x + 1)$ ther terms correct

Pa	age 6	Mark Scheme: Teac	Syllabus Syllabus er	
		IGCSE– October/No	ovember 2009	0606 732
10 (i)	$\frac{dy}{dx} = 9x^2 + \frac{dy}{dx}$ at <i>P</i> grad = tangent <i>y</i> -		M1 A1 DM1 A1 [4]	Syllabus 0606erM1 for differentiation A1 for gradient = 7 and $y = 3$ DM1 for attempt to find tangent equation
(ii)	leading to $(x-1)(3x^2)$ (x-1)(3x)	$4 = 3x^{3} - 2x^{2} + 2x$ $3x^{3} - 2x^{2} - 5x + 4 = 0$ $x^{2} + x - 4) - 0$ $x = -\frac{4}{3}, y = -\frac{40}{3}$	M1 B1 DM1 DM1 A1 [5]	M1 for equating tangent and curve equations B1 for realising $(x - 1)$ is a factor DM1 attempt to factorise cubic DM1 for attempt to solve quadratic A1 for both
l1 (a)	$\tan \theta + \cot \theta = \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta} = \frac{1}{\cos \theta \sin \theta}$ $= \cos \cos \theta$	$\overline{n\theta}$	B1 B1 B1	 B1 for attempt to obtain one fraction B1 for use of an appropriate identity B1 for simplification Scheme follows for alternative proofs
(b) (i)	leading to		[3] M1 A1√A1 B1 [4]	M1 for use of $\tan x = \frac{\sin x}{\cos x}$ and correct attempt to solve $\sqrt{A1}$ on their $x = 70.5^{\circ}$ B1 for $x = 180^{\circ}$
(ii)	$2(\csc^2 y)$ $2 \csc^2 y$ $(2 \csc y)$	$3 \operatorname{cosecy} = 0$ -1) + 3 cosecy = 0 + 3 cosecy - 2 = 0 -1)(cosecy + 2) = 0 $9 \sin y = -\frac{1}{2}, y = \frac{7\pi}{6}, \frac{11\pi}{6}$ 3.67, 5.76	M1 M1 M1 A1,A1 [5]	M1 for use of correct identity M1 for attempt to solve quadratic M1 for dealing with cosec/cot Scheme follows for alternative solutions

Page 7	Mark Scheme: Teach		Syllabus of er			
	IGC3E- October/No	IGCSE– October/November 2009 0606				
2 EITHER (i) $\pi r^2 h = 1000$, leading to	M1	$\frac{Syllabus}{0606}$ er 0606 M1 for attempt to use volume			
$h=\frac{1000}{\pi r^2}$		A1 [2]				
	iven answer	B1	B1 for $A = 2\pi rh + 2\pi r^2$ GIVEN ANSWER			
$A=2\pi r^2+$	$\frac{2000}{r}$	A1 [2]				
(iii) $\frac{\mathrm{d}A}{\mathrm{d}r} = 4\pi r -$	1	M1 A1	M1 for attempt to differentiate given <i>A</i> A1 all correct			
	$= 0, 4\pi r = \frac{2000}{r^2}$	DM1 A1	DM1 for solution = 0			
leading to r		[4]				
(iv) $\frac{d^2 A}{dr^2} = 4\pi$	r = 5.42 so min value	M1 A1	M1 for second derivative method or gradient method' A1 for minimum, must be from correct			
$+ \text{ ve when } 7$ $A_{\min} = 554$	5.42 so min value	B1 [3]	work			
2 OR		[3]				
(i) $y = x + \cos \frac{dy}{dx} = 1 - 2$		M1 A1	M1 for attempt to differentiate			
when $\frac{dy}{dx} =$	$0, \sin 2x = \frac{1}{2}$	DM1	DM1 for setting to 0 and attempt to solve			
leading to x	12 12	DM1 A1,A1 [6]	DM1 for correct order of operations			
(ii) Area = $\int_{\frac{\pi}{12}}^{\frac{5\pi}{12}} x$	$+\cos 2x.dx$	M1	M1 for attempt to integrate			
$=\left[\frac{x^2}{2} + \frac{1}{2}s\right]$	$\left[\sin 2x \right]_{\frac{\pi}{12}}^{\frac{5\pi}{12}}$	A1,A1 DM1	A1 for each term correct DM1 for correct use of limits – must be in radians			
$=\frac{\pi^2}{12}$		A1 [5]	(Trig terms cancel out)			