UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2011	0606

Mark Scheme Notes

Marks are of the following three types:

- www.papaCambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2011	0606

The following abbreviations may be used in a mark scheme or used on the scripts:

- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme: Teachers IGCSE – May/June		Syllabus of er 0606
		IGCSE – May/Julie	2011	0000 280
_	$x^2 + (2k+10)x$	$z + \left(k^2 + 5\right) = 0$	M1	Syllabuser06060.000 CommunityM1 for equating to zero and use $b^2 = 4ac$ M1 for solutionM1 for solution
	$\left(2k+10\right)^2 = 4\left($	(k^2+5)	M1	b = 4ac M1 for solution
	k = -2	,	A1 [3]	
	(or $\frac{dy}{dx} = 2x + (2)$	$2k+10\big), x = -\big(k+5\big)$	M1	M1 for differentiation and attempt to
	$0 = (k+5)^2 - (2)^2$	$(2k+10)(k+5)+k^2+5$	M1	equate to zero. M1 for attempt to substitute in for x in
	leading to $k = -\frac{1}{2}$		A1	terms of k, for $y = 0$ and for attempt at solution.
	$\left(\text{or } \left(x + A \right)^2 = x \right)$	$x^{2} + (2k+10)x + k^{2} + 5$	M1	M1 for approach
	$A = (k+5), A^2$	$=k^{2}+5$	M1	M1 for equating and attempt at solution
	$\left(k+5\right)^2 = k^2 + 3$	5, leading to $k = -2$)	A1	
	(or by completing $v = (x + (k + 5))$	g the square $\binom{2}{3} - (k+5)^2 + (k^2+5)$	M1	M1 for approach
	$(k+5)^2 = k^2 + 3$			
	(k+3) = k + 3 leading to $k = -3$		M1 A1	M1 for equating last 2 terms to zero and attempt to solve
	${}^{5}C_{3}2^{2}a^{3} = (10)^{4}$	${}^{4}C_{2}\frac{a^{2}}{9}$	B1B1	B1 for ${}^{5}C_{3}2^{2}a^{3}$, B1 for ${}^{4}C_{2}\frac{a^{2}}{9}$
	$a = \frac{1}{6}$		M1	M1 for a relationship between the 2 coefficients and attempt to solve
			A1 [4]	
	(a) $k=2, m=3$, <i>p</i> = 1	B3	B1 for each
	(b) (i) 5		B1	
	(ii) $\frac{2\pi}{3}$		B1 [5]	
	re must be ev ulator in all part	vidence of working without a		
	(i) $\frac{\left(4+\sqrt{2}\right)}{\left(1+\sqrt{2}\right)}\left(\frac{1}{\sqrt{2}}\right)$		M1A1	M1 for attempt to rationalise and attempt to expand
	(ii) Area = $\frac{1}{2} \times ($	$\left(4+2\sqrt{2}\right)\times\left(1+\sqrt{2}\right)$	M1	M1 for attempt at area using surd form
	$=4+3\sqrt{2}$		A1	and attempt to expand
	(iii) Area = AC			
	$=(4+2\sqrt{2})$	$\left(1+\sqrt{2}\right)^2+\left(1+\sqrt{2}\right)^2$	M1	M1 for attempt at AC^2 or AC in surd
	$=27+18\sqrt{2}$	-	A1	form, with attempt to expand

				they are a second and the second and
Paç	ge 5	Mark Scheme: Teachers		n Syllabus A er
		IGCSE – May/June 2	2011	0606 732
5 (i)	$2\left(\frac{1}{8}\right)-5$	$5\left(\frac{1}{4}\right)+10\left(\frac{1}{2}\right)-4$	M1	Syllabuser06060606M1 for substitution of $x = 0.5$ or at at long divisionM1 attempt to obtain quadratic
	= 0		A1	at long division
(ii) (2 <i>x</i> -	$-1)(x^2-2)$	2x+4)	M1A1	factor
For $(x^2 -$	-2x+4),	, ' $b^2 < 4ac$ '	M1	A1 for correct quadratic factor M1 for correct use of discriminant or solution of quadratic equation $= 0$
so only o	ne real roc	ot of $x = 0.5$	A1 [6]	A1, all correct with statement of root.
6 (i)	$\lg y - 3 =$	$=\frac{1}{5}(x-5)$	B1M1 A1	B1 for gradient, M1 for use of straight line equation
	Either b	e	B1	B1 for $b = \frac{1}{5}$
	$y = 10^{\left(\frac{1}{5}x\right)}$ $= 10^{\frac{1}{5}x} 10^{\frac{2}{5}x}$		M1	M1 for use of powers of 10 correctly to obtain a
	$= 10^{9} 10$ a = 100		A1	A1 for <i>a</i>
	0.	$= \lg a + \lg 10^{bx}$ $a + bx, \ \lg a = 2$	[6] M1	M1 for use of logarithms correctly to obtain a
	a = 100		A1	A1 for <i>a</i>
	$b = \frac{1}{5}$		B1	B1 for $b = \frac{1}{5}$
	Or $10^3 = 10^5 = a(1)^5 = a($		M1	M1 for simultaneous equations involving powers of 10
	$b = \frac{1}{5}, a$		B1, A1	B1 for $b = \frac{1}{5}$, A1 for $a = 100$
7 (i)	$^{14}C_6 = 30$)03	B1	
(ii)	${}^{8}C_{4} \times {}^{6}C_{2}$	2	B1B1	B1 for ${}^{8}C_{4}$ or ${}^{6}C_{2}$
	=1050	ł	B1	B1 for \times by ${}^{6}C_{2}$ or ${}^{8}C_{4}$ B1 for 1050
(iii)	${}^{8}C_{6} + 6^{8}C_{6}$	$C_5 = 364$	B1B1	B1 for ${}^{8}C_{6}$ or equivalent
			B1 [7]	B1 for $6^{8}C_{5}$ or equivalent B1 for 364

	Pag	ge 6 Mark Scheme: Teacher IGCSE – May/June		Syllabus of er 0606
				aCa.
	(i)		B1 B1 B1 B1	SyllabusSyllabusof 0606B1 for $x = -0.5$ B1 for $x = 2.5$ B1 for $y = -5$ B1 for shape
((ii)	(1,-9)	B1	
	(iii)		√B 1	$\sqrt{B1}$ on shape from (i)
			B1 [7]	B1 for a completely correct sketch
((i)	$\Delta OBA: \theta + 2\left(\frac{\theta}{3}\right) = \pi$	M1 A1	M1 for using angles in an isosceles triangle
		$9\pi = r \times \frac{3\pi}{5}$ r = 15	M1 A1	M1 for use of $s = r\theta$
		Area = $\left(\frac{1}{2} \times 15^2 \times \frac{3\pi}{5}\right) - \left(\frac{1}{2} \times 15^2 \times \sin\frac{3\pi}{5}\right)$ =105	M1M1 A1 [7]	M1 for use of $\frac{1}{2}r^2\theta$ or $\frac{1}{2}rs$ M1 for use of $\frac{1}{2}r^2\sin\theta$ or other correct method
((i)	$ \begin{pmatrix} 29\\ -13 \end{pmatrix} - \begin{pmatrix} 5\\ -6 \end{pmatrix} = \begin{pmatrix} 24\\ -7 \end{pmatrix} $	M1	M1 for subtraction
		Magnitude = 25, unit vector $\frac{1}{25}\begin{pmatrix}24\\-7\end{pmatrix}$	M1 A1	M1 for attempt to find magnitude of their vector
		$2\overrightarrow{AC} = 3\overrightarrow{AB}$ or $2\overrightarrow{AB} + 2\overrightarrow{BC} = 3\overrightarrow{AB}$ leading to $\overrightarrow{AC} = \begin{pmatrix} 36\\ -10.5 \end{pmatrix}$	M1	M1 for attempt to find \overrightarrow{AC} – may be part of a larger method
		$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ or $\overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{OC} - 2\overrightarrow{OB}$	M1	M1 for attempt to find \overrightarrow{OC}
		leading to $\overrightarrow{OC} = \begin{pmatrix} 41\\ -16.5 \end{pmatrix}$	A1 A1	A1 for each
		(equivalent methods acceptable)	[7]	

Page 7	Mark Scheme: Teac IGCSE – May/Ju		Syllabus or 0606
			Sec.
(i) $2\cos e^{i\theta}$	$x^2 - 5\cos e^2 x - 3 = 0$	M1A1	Syllabuser0606900 correct identity or to get in terms of sin x DM1 for attempt to solve $\sqrt{180^\circ}$ - their x
	$c\theta + 1)(cos cc\theta - 3) = 0$	DM1	DM1 for attempt to solve
leading	to $\sin x = \frac{1}{3}$, $x = 19.5^{\circ}$, 160.5°	A1√A1	$\sqrt{180^\circ}$ - their x
(ii) tan 2 <i>y</i> =	$=\frac{5}{4}$	M1	M1 for attempt to get in terms of tan
2y = 51.	34°, 231.34°	M1	M1 for dealing correctly with double angle
<i>y</i> = 25.7	°, 115.7°	A1,√A1	$\sqrt{90^\circ}$ their y
(iii) $\left(z + \frac{\pi}{6}\right)^2$		M1	M1 for dealing with order correctly and attempt to solve
	$-\frac{\pi}{6}$ $\left(\frac{4\pi}{3}-\frac{\pi}{6}\right)$		
$z=\frac{\pi}{2},$	$\frac{7\pi}{6}$ allow 1.57, 3.67	A1, A1 [12]	
EITHER			
(i) $\frac{\mathrm{d}y}{\mathrm{d}x} = 9x$		M1	M1 for differentiation and substitution of $x = -1$
when x	$=-1, \ \frac{\mathrm{d}y}{\mathrm{d}x}=0$		
tangent $A (0, 5)$		DM1 A1	DM1 for attempt at equation of tangent and coordinates of A
(ii) <i>B</i> (0, 1		B1	B1 for <i>B</i>
At B , $\frac{d}{d}$			
	$y-1 = \frac{1}{5}x$ C (-5, 0)	M1A1	M1 for attempt at normal and <i>C</i> , must be from differentiation and using correct point
At $D \frac{1}{5}$	x+1=5, D (20, 5)	M1A1	M1 for attempt to obtain <i>D</i> , equating normal and tangent equations
Area =	$\frac{1}{2}$ × 20 × 5,	M1	M1 for valid attempt at area
= 50	_	A1 [10]	

				Mary .	
	Page 8	Mark Scheme: Teachers		Syllabus er	
		IGCSE – May/June 2	2011	0606 230	
12	OR			any a	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12$	2x+9	M1	Syllabus 0606 M1 for differentiation and equating to the using a product M1 for attempt to solve	
	When $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$,	x = 1, 3 P(1, 4)	M1 A1 A1	M1 for attempt to solve A1 for both x values A1 for y coordinate	2
	Area = $8 - \int_1^3 dt$	$x^3 - 6x^2 + 9x \mathrm{d}x$	√B1M1	$\sqrt{B1}$ on <i>y</i> coordinate for area of rectangle M1 for attempt to integrate	l
	$= 8 - \left[\frac{x^4}{4} - 2\right]$	$2x^3 + \frac{9x^2}{2} \bigg]_1^3$	A2,1,0	-1 each error	
	$=8-\frac{27}{4}+\frac{11}{4}$		DM1	DM1 for application of limits	
	= 4		A1 [10]		