UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papaCambridge.com MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Svllab A
	IGCSE – October/November 2011	0606

Paper

Mark Scheme Notes

Marks are of the following three types:

- ambridge.com Method mark, awarded for a valid method applied to the problem. Method Μ marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllab A	Paper
	IGCSE – October/November 2011	0606	2
The foll AG	owing abbreviations may be used in a mark scheme or u Answer Given on the question paper (so extra che ensure that the detailed working leading to the result i	ecking is needed to	Cambridge.co.
BOD	Benefit of Doubt (allowed when the validity of a s	olution may not be	33

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- This is deducted from A or B marks in the case of premature PA –1 approximation.
- S –1 Occasionally used for persistent slackness - usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	4742				
Page 4	Mark Scheme: Teache			Syllabus 7.0 r	
	IGCSE – October/Nove			0606 2030	
$1 \qquad \frac{1}{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}$	$\frac{\overline{s\theta}}{1\theta}$	M1		Syllabus 0606 • adding fractions in terms of /tan/cot correctly	
$=\frac{\sin\theta\cos\theta}{\sin^2\theta+\cos^2\theta}$	$\frac{\partial s\theta}{\cos^2\theta}$	M1	M1 for	use of correct identity	
$=\sin\theta\cos\theta$	9	A1 [3]	A1 for (correct solution only	
$\frac{\tan\theta}{\tan^2\theta+1} \mathbf{G}$	or $\frac{\cot\theta}{\cot^2\theta+1}$	M1	M1 for a correctly	adding fractions in terms of tan/o	
$=\frac{\tan\theta}{\sec^2\theta}$ or	$\frac{\cot\theta}{\csc^2\theta}$	M1	M1 for	use of correct identity	
$=\sin\theta\cos\theta$	θ	A1	A1 for	correct solution only	
2 $(2y+1)^2 + (\text{or } 5x^2 - 2x)^2$	$y^2 = 29$ (x - 115 = 0)	M1		attempt to get an equation in terr variable only	
leading to :	$5y^2 + 4y - 28 = 0$	DM1	DM1 fo equation	or obtaining a 3 term quadratic	
(or $x^2 + \left(\frac{y}{x}\right)^2$	$\left(\frac{x-1}{2}\right)^2 = 29$	DM1	DM1 fo equation	or attempt to solve quadratic	
$x = -\frac{23}{5}, y$	$v = -\frac{14}{5}$ and	A1	A1 for	a pair of values	
x = 5, y = 2		A1			
(5, 2) spotte	ed gets B1	[5]			

Page 5	Mark Scheme: Teacher		Syllabus of r
	IGCSE – October/Nove	mber 2011	0606 732
(i) $\frac{1}{\log_2 x}$ or	$\frac{\log_2 2}{\log_2 x}$	B1	M1 for a correct attempt to obtain and solve a quadratic equation in terms of <i>u</i> or
(ii) $u^2 - 3u + 2$ (u-1)(u-1)		M1	M1 for a correct attempt to obtain and solve a quadratic equation in terms of u or $\log_2 x$
u = 1, 2		A1	A1 for $u = 1, 2$
		M1	M1 for attempt to solve an equation of the form $\log_2 x = k$ leading to $x = 2^k$
x = 2 and	<i>x</i> = 4	A1 [5]	A1 for both
When $x = 2, y =$	= 9	B1	B1 for $y = 9$
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{3} \cdot 6x \cdot \left(3x^2\right)$	$(+15)^{-\frac{1}{3}}$	B1, B1	B1 for $\frac{2}{3}$.6x, B1 for $(3x^2 + 15)^{\frac{1}{3}}$
when $x = 2$, $\frac{dy}{dx}$	$=\frac{8}{3}$		
∴ grad of norm normal : $y - 9 =$	0	M1 M1	M1 for use of $m_1m_2 = -1$ M1 for attempt to find equation of normal, must be using gradient of a perpendicular line
8y + 3x = 78		A1 [6]	A1 allow unsimplified
(i) $y^2 = m2^x - m2^x$	+ <i>C</i>	M1	M1 for use of straight line equation as given
81 = 80 + c c = 1	2	M1	M1 for use of (16, 81)
$y^2 = 5\left(2^x\right)$	+1	A1	A1 – do not allow if subsequent incorrect work is seen
(ii) $36 = 5(2^x)$	+1	M1	M1 substitution of $y = 6$ into their equation in terms of y^2 and 2^x
leading to	$7 = 2^{x}$	DM1	DM1 for correct solution of equation of the form $2^x = k$
<i>x</i> = 2.81		A1 [6]	

MAR AND					
Pa	age 6	Mark Scheme: Teach IGCSE – October/Nov		Syllabus 0606	
			/ember 2011	U000 Pacan	
(i)				Assuming correct terms in <i>x</i> B1 for 486 B1 for 540 B1 for 30 B1 for all terms correct and no extra terms	
		$5x + 270x^2 + 90x^3 + 15x^4 + x^5$	B1	B1 B1 for 486	
		$5x + 270x^2 - 90x^3 + 15x^4 - x^5$	B1 B1	B1 for 540 B1 for 30	
	486 + 540	$0x^2 + 30x^4$	B1 B1	B1 for all terms correct and no extra terms	
(ii)	$30y^2 + 54$	40y - 600 = 0	M1	M1 for attempt to obtain a 3 term quadratic equation.	
			DM1	DM1 for correct attempt at solution of quadratic	
	<i>y</i> = 1.05		A1	A1 need both solutions	
	leading to	$x = \pm 1.02$	A1 [8]	A1 need both solutions	
				+	
(i)	$16x^{-\frac{1}{2}} - 8$	$+x^{\frac{1}{2}}$	B1, B1, B1	B1 for each correct term	
(ii)	$y = 32x^{\frac{1}{2}}$	$-8x+\frac{2}{3}x^{\frac{3}{2}}(+c)$	M1	M1 for attempt to integrate a 3 term	
		J	A2, 1, 0	expression -1 for each error	
	When <i>x</i> =	= 9 and $y = 30, c = -12$	M1	M1 for attempt to find c , must have	
				attempted integration	
			A1 [8]	A1 for $c = -12$	
(i)	<i>M</i> (2, 4)		B1	Allow in (ii)	
	Grad AB :	$=\frac{-2}{6}, \perp$ grad $=3$	M1	M1 for attempt to find gradient of perpendicular	
	<i>CD</i> : <i>y</i> −4	4=3(x-2)	DM1 A1	DM1 for straight line equation	
(ii)	C (-2, 2) D (10, -7))	B1 B1, B1	B1 for <i>y</i> coordinate of <i>A</i> B1 for each	
(iii)) Area $= 37$	'.5	M1, A1 [9]	M1 for a valid attempt at area	
	Special c	ase: (ii) allow $D(-6,5)$	B1, B1		
		(iii) area 12.5	M1, A1		

Pa	ge 7		Mark Scheme: Teachers' version IGCSE – October/November 2011		
) (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x.4\mathrm{c}$	$\cos 4x + \sin 4x$	M1 B1, A1	SyllabusO606M1 for differentiation of a productB1 for $4\cos 4x$, A1 all else correctDM1 for realising integration is form	
(ii)	$I = \left(\frac{1}{4}\right) \left[\frac{1}{2}\right]$	$x\sin 4x - \int \sin 4x \mathrm{d}x \mathrm{d}x$	DM1	DM1 for realising integration is form reverse process of (i) – do not need $\left(\frac{1}{4}\right)$ until last A1	
	$=\left(\frac{1}{4}\right)\left[xs\right]$	$ in 4x - \left(-\frac{1}{4}\cos 4x\right)\right] $	A1, A1 B1	A1 for $x\sin 4x$, A1 for $\int \sin 4x dx$ B1 for $-\frac{1}{4}\cos 4x$	
	For defini $\left(\frac{1}{4}\right)\left[x\sin^2\theta\right]$	te integral $4x - \left(-\frac{1}{4}\cos 4x\right)\Big]_{0}^{\frac{\pi}{8}}$	M1	M1 for correct application of limits	
	$=\frac{\pi}{32}-\frac{1}{16}$, or 0.0357	A1 [9]		
0 (i)	$2 \tan^2 x +$	$2 = 5\tan x + 5$	M1	M1 for use of correct identity	
	$2\tan^2 x -$	$5\tan x - 3 = 0$	M1	M1 for solution of 3 term quadratic equation	
	$\tan x = -\frac{1}{2}$	$\frac{1}{2}$, $\tan x = 3$	M1	M1 for attempt to solve $tanx = k$ from a 3 term quadratic equation	
	$x = 153.4^{\circ}$,333.4° and 71.6°,251.6°	A1, A1	A1 for any pair	
(ii)	$\sin\left(0.5y\right)$	$\left(+\frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$	M1	M1 for dealing with $\sqrt{2}$ correctly	
	$0.5y + \frac{\pi}{3} =$	$=\frac{\pi}{4},\frac{3\pi}{4},\frac{9\pi}{4}$	M1 M1	M1 for correct order of operations M1 for correct order of operations and attempt to get a solution in the range	
	leading to	$y = \frac{5\pi}{6}, \frac{23\pi}{6}$	A1, A1 [10]	Allow decimal equivalents 2.62 and 12.0	

Page 8	8 Mark Scheme: Teachers' version IGCSE – October/November 2011		Syllabus 0606 M1 for differentiation of a product B1 for $(-2A\sin 2x + 2B\cos 2x)e^{-x}$
EITHER			and
(i) $A = 4$		B1	
(ii) $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-x} \left(-\frac{1}{2}\right)^{-x}$	$2A\sin 2x + 2B\cos 2x) -$	M1 B1	M1 for differentiation of a product B1 for $(-2A\sin 2x + 2B\cos 2x)e^{-x}$
$e^{-x}(A\cos 2)$	$x + B\sin 2x$)	B1	B1 for $-e^{-x}(A\cos 2x + B\sin 2x)$
	6 = 2B - A, B = 5 n acceptable)	M1 A1	M1 for substitution to find <i>B</i>
(iii) when $\frac{dy}{dx} =$	0,	M1	M1 for their $\frac{dy}{dx} = 0$
$e^{-x}(p\cos 2)$	$x-q\sin 2x\big)=0$	M1	M1 for attempt to simplify
leading to t	$\operatorname{an} 2x = \frac{p}{q} \left(=\frac{6}{13}\right)$	M1	M1 for attempt to obtain $\tan 2x = \frac{p}{q}$
<i>x</i> = 0.216		M1 A1 [11]	M1 for attempt to solve $\tan 2x = k$
OR		[11]	
	$\frac{1}{x^{2}-1} - 2x \ln(x^{2}-1) - (x^{2}-1) - (x^{2}-1)^{2}$	M1 B1	M1 for differentiation of a quotient B1 $\frac{2x}{(x^2-1)}$
Rearranging	g to get $k = 2$	A1 A1	A1 for all else correct A1 for rearrangement to get $k = 2$
(ii) $\partial y = \frac{\mathrm{d}y}{\mathrm{d}x} p$,		M1	M1 for substitution of $x = \sqrt{5}$ and correct method
leading to 6	$\partial y = -0.108 p$	$\sqrt{A1}$	$\sqrt{A1}$ on their <i>k</i>
(iii) when $\frac{dy}{dx} =$	$0, \ 1 - \ln\left(x^2 - 1\right) = 0$	M1	M1 for $\frac{dy}{dx} = 0$ and attempt to simplify
$\ln\left(x^2-1\right) =$:1	A1	A1 for $\ln(x^2 - 1) = 1$
$x^2 - 1 = e o$	r 2.72	A1	A1 for $x^2 - 1 = e$ or 2.72
leading to y	$c = \sqrt{1+e}$	A1	
$y = \frac{1}{e}$		A1 [11]	