CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2 Mark Scheme Syllabus	
IGCSE – October/November 2012 0606	

Mark Scheme Notes

Marks are of the following three types:

- Cambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. А Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following • on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

			· · · ·	<u>.</u>
Page 3	Mark Scheme	Syllabus	Q.	
	IGCSE – October/November 2012	0606	The start	

Page 5	Wark Scheme	Syllabus	
	IGCSE – October/November 2012	0606	
The follow	ring abbreviations may be used in a mark scheme or u		
AG	Answer Given on the question paper (so extra check the detailed working leading to the result is valid)	king is needed to ensure that	
BOD	Benefit of Doubt (allowed when the validity of a solution clear)	lution may not be absolutely	>

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4 Mark Scheme			Syllabus Syllabus
	IGCSE – October/Nov	vember 2012	0606 230
(i)		B1 [2] B1, B1 [2]	MuchanneSyllabus0606B1 for shapeB1 for 3 and $-\frac{3}{5}$ B1 for each
$k-6x=2x^{2}+$ $2x^{2}+x(k+6)$ for a tangent <i>k</i> leading to k^{2} $(k+18)(k+2)$ Alternative: -4 $k-6\left(\frac{-k-6}{4}\right)$ leading to k^{2}	k - k = 0 $b^{2} = 4ac$ + 20k + 36 = 0 = 0, so $k = -2, -18$	M1 M1 DM1 A1 [4] M1 M1 DM1 A1	M1 for attempt to equate and obtain a 3 term quadratic M1 for use of $b^2 = 4ac$ DM1 for solution of resulting quadratic M1 for equating gradients M1 for substitution of $x = \frac{-k-6}{4}$ DM1 for solution of resulting quadratic
$\log_q 4 = -$	$\frac{1}{5} p \text{ or equivalent}$ $\frac{2p}{5}$ $= \log_q 16 + \log_q q$	M1 A1 [2] B1, B1 [2]	M1 for attempt to obtain 32 in terms of 2 or 4 B1 for each
$5 (u^{2}) - 7 (u) + (5u - 2) (u - 1)$ $5^{x} = 1, x = 0,$ $5^{x} = \frac{2}{5}, x = -0$) = 0	M1 DM1 B1	M1 for attempt to obtain a quadratic equation in terms of <i>u</i> or 5^x DM1 for attempt to solve quadratic B1 for $x = 0$ (could be 'spotted') M1 for correct attempt to use logarithms to obtain <i>x</i> .

Page 5	Mark Sche	eme	Syllabus
i ugo o	IGCSE – October/No		0606
5 (i) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x}{\mathrm{d}x}$	$\frac{\cos 4x - x^2 \left(-4 \sin 4x\right)}{\cos^2 4x}$	B1,M1 A1 [3]	Syllabus r 0606 0606 B1 for differentiation of cos 4. 0606 M1 for attempt at differentiation of quotient 0400000000000000000000000000000000000
(ii) $\partial y \approx \frac{\pi}{2} p$,-1.57 <i>p</i>	M1 A1 [2]	M1 for attempt to use small changes A1 for correct solution only – must have 2^{nd} term in (i) correct.
(ii) Independ	$\int_{-4}^{6} = x^{6} + 12x^{3} + 60$ lent term =) + (-4×'12') = 72	B3 [3] M1 A1 [2]	B1 for each correct term M1 for sum of 2 products $(2 \times \text{their } 60)+(-4 \times \text{their } 12)$ A1 for 72
= 50 (ii) (-3)	$\overline{(5-2\sqrt{2})^2} = 45 - 12\sqrt{10} + 8$ $3 - 12\sqrt{10}$ $\sqrt{5} + 2\sqrt{2}$ $\frac{\sqrt{2}}{\sqrt{2}} \times \frac{4\sqrt{3} - 5\sqrt{2}}{4\sqrt{3} - 5\sqrt{2}}$	B1 B1 [2]	Must be convincing
$=-1+\sqrt{2}$	6	M1 DM1 A1, A1 [4]	M1 for attempt to rationalise, DM1 for attempt to simplify A1 for each correct
	$= -\frac{1}{2} \therefore \text{ perp grad } 2$ nation $y + 2 = 2(x - 13)$	B1, B1 [2] M1 M1 A1	M1 for attempt to find grad of perpendicular M1 for attempt to find equation of perpendicular and hence D
= 260	$\sqrt{16^2 + 8^2} \sqrt{13^2 + 26^2}$ $\begin{array}{rrrr} 13 & 0 & -3 \\ -2 & -28 & 6 \end{array} = 260$	M1 A1 [5]	M1 for attempt to find area of triangle

			Syllabus r 0606 0606 Must be using correct notation 01 for a valid method to find inverses M1 for a valid method to find inverses A1 must have correct notation Follow through on their (i)
Page 6	Mark Scheme		Syllabus
	IGCSE – October/Nove	ember 2012	0606 232
9 (i) $0.2 \le y \le$		B1 [1]	Must be using correct notation
(ii) $g^{-1}(x) =$	$=\frac{1+x}{2x}$	M1 A1 [2]	M1 for a valid method to find invers A1 must have correct notation
(iii) 0.2 ≤ <i>x</i> ≤		√B1 [1]	Follow through on their (i)
(iv) $g^2 = -\frac{1}{(1-x)^2}$	$\frac{1}{1} = 3$	M1	M1 for correct attempt to find g^2
[*]	$\frac{1}{\frac{1}{2x-1}} = 3$	DM1	DM1 for equating to 3 and attempt to solve.
$\frac{2x-1}{3-2x} =$	3 leading to $x = 1.25$	A1 [3]	
10 (i) $\sin x = 0.17$ $\sqrt{y} = 3.35$	0.5 0.71 0.87 0.98 4 4.42 4.73 4.97	B2,1,0	Can be implied by graph
		M1 A1 [4]	M1 for attempt to plot \sqrt{y} against sin x
(ii) gradient 2	4 = 2 allow (1.8 – 2.2)	M1,A1	M1 for attempt to calculate the gradient and equate to A
vertical at allow (2.8	xis intercept $B = 3$, 3 - 3.2)	B1 [3]	B1 for <i>B</i>
(iii) $\sin x = 0$ allow (20)		M1,A1 [2]	M1 for valid attempt to obtain y
(iv) $\sqrt{y} = 3.5$		M1,A1 [2]	M1 for a complete method to find x
allow (12	.3 – 10.3)	[]	

Page 7	Mark Scheme		Syllabus 7.0 r	
	IGCSE – October/N	lovember 2012	0606 232	
1 (a) $\sin\left(2x-\frac{\pi}{3}\right)$ =	$=\frac{1}{\sqrt{2}}$	M1	Syllabus r 0606 Physical Physic	
$2x - \frac{\pi}{3} = \frac{\pi}{4}, \frac{3}{4}$	$\frac{\pi}{4}$	M1	M1 for a correct order of operations	
$x = \frac{7\pi}{24}, \frac{13\pi}{24}$ (0.916, 1.70)		A1, A1 [4]		
(b) (i) $10\cos^2 y + 5\sin y$	$\cos y - 5\sin^2 y = 7$	M1	M1 for expansion	
$10 + 5 \tan y - 5 \tan y$	$y^2 = 7 \sec^2 y$	M1	M1 for division by cos ²	
$10 + 5 \tan y - 5 \tan y$	$y = 7\left(\tan^2 y + 1\right)$	M1	M1 for use of correct identity	
$12 \tan^2 y - 5 \tan y$ Or	-3 = 0	A1 [4]		
$10 - 15\sin^2 y + 5\sin^2 y$	n $y \cos y = 7$		M1 for expansion and use of identity	
$3\sec^2 y - 15\tan^2 y$	$+5\tan y=0$		M1 for division by cos ²	
$3(1+\tan^2 y)-15t$	$an^2 y + 5 \tan y = 0$		M1 for use of correct identity	
Or $15\cos^2 y + 5\sin yc$	•		M1 for expansion and use of identity	
$15 + 15 \tan y - 12 \sin y$	•		M1 for division by \cos^2	
$15 + 5 \tan y - 12(1)$	$+\tan^2 y = 0$		M1 for use of correct identity	
(ii) $(4 \tan y - 3)(3)$		M1	M1 for attempt to solve quadratic	
$\tan y = \frac{3}{4}, \ y =$	= 36.9°	A1		
$\tan y = -\frac{1}{3}, y$	$v = 161.6^{\circ}$	A1 [3]		

Page 8	Mark Scheme		Syllabus
	IGCSE – October/Nov	ember 2012	0606 23
EITHER (i) $A(-1, 0) = \frac{dy}{1} = (12 + 1)^{2}$	nd B (2, 0) -6x)2(1+x)+(1+x) ² (-6)	B1, B1	Syllabus 0606 M1 for attempt to differentiate a
=2(1+x)		M1, A1	M1 for attempt to differentiate a product
$\therefore C(1, 24)$		M1 A1	M1 for attempt to find stationary poin
•	$(12-6x)(1+x)^2 dx$	[6]	
•-1	$(2+3x-x^3)dx$ $(2x+9x^2-\frac{3x^4}{2}]^2$	M1	M1 for attempt to expand out
L	$2 \boxed{-1}$ $(-12+9-\frac{3}{2})$	DM1, A1	DM1 for attempt to integrate an expanded out form
= 40.5		DM1 A1 [5]	DM1 for correct use of limits
OR (i) $y = x^3 - 3$	$5x^2-9x(+c)$	M1, A1	M1 for attempt to integrate condone omission of c
<i>c</i> = 30	bugh (0, 30) leading to $5x^2 - 9x + 30$	M1 A1 [4]	M1 for attempt to find <i>c</i> Allow here
uл	$= 0, \ 3x^2 - 6x - 9 = 0$ x = -1 and x = 3	M1 A1, A1 [3]	M1 for attempt to set to 0 and solve A1 for each
(iii) Area = \int_{-1}^{3}	$x^3 - 3x^2 - 9x + 30 \mathrm{d}x$		
$=\left[\frac{x^4}{4}-x\right]$	$\left[3-\frac{9x^2}{2}+30x\right]_{-1}^{3}$	M1, A1	M1 for attempt to integrate
$=\left(\frac{81}{4}-27-\frac{81}{2}\right)$	$+90$) $-\left(\frac{1}{4}+1-\frac{9}{2}-30\right)$	DM1	DM1 for correct use of limits
= 76		A1	
		[4]	