www.PanaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Syllabus Page 2 Mark Scheme IGCSE - October/November 2012 0606

Mark Scheme Notes

Marks are of the following three types:

- www.papaCambridge.com M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Α Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	.0	ľ
	IGCSE – October/November 2012	0606	100	

Page 3	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606
The followi	ring abbreviations may be used in a mark scheme or us	sed on the scripts:
	Answer Given on the question paper (so extra check the detailed working leading to the result is valid)	Syllabus 0606 sed on the scripts: sing is needed to ensure that
	Benefit of Doubt (allowed when the validity of a soluclear)	ution may not be absolutely
	Correct Answer Only (emphasising that no "follow this allowed)	rough" from a previous error
ISW I	Ignore Subsequent Working	
MR I	Misread	
	Premature Approximation (resulting in basically correaccurate)	ect work that is insufficiently
sos s	See Other Solution (the candidate makes a better atte	empt at the same question)

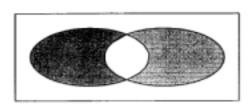
Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW −1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

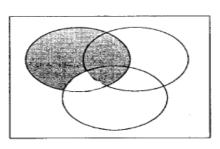
			. v	
	Page 4	Mark Scheme	Syllabus	3
		IGCSE – October/November 2012	0606	No.
				8
1	Rearranges to	form $ax^2 + bx + c$		May 1
	Solves 3 term	quadratic		Mi
	$x = -\frac{1}{2} \operatorname{or} \frac{9}{2}$			Al Joe Con
	$x < -\frac{1}{2}, x >$	$\frac{9}{2}$		A1

1	Rearranges to form $ax^2 + bx + c$
	Solves 3 term quadratic
	$x = -\frac{1}{2} \text{ or } \frac{9}{2}$

$$x = \frac{1}{2}$$
 $x < -\frac{1}{2}, x > \frac{9}{2}$

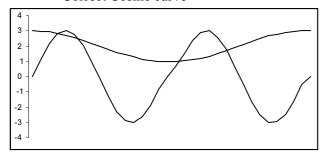

$$x < -\frac{1}{2}, x > \frac{9}{2}$$

2 (a) (i)
$$n(P) = 11$$

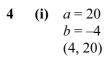

(ii)
$$18 \notin F$$
 or $18 \notin F$

(iii)
$$T \subset F$$
 or $F \supset T$ or $F \cup T = F$ or $F \cap T = T$ o.e.

(b) (i)



(ii)



3 Sine curve from –3 to 3 or with two cycles Completely correct

Correct Cosine curve

(ii) 4

(ii) Negative quadratic shape Correct position with turning point in first quadrant and 4 marked on y-axis

[3]

[2]

- B1
- B1

B1

B1

M1

- A1
 - B2,1,0

[4]

- В1√
 - [1]
- **B**1 В1
- $B1 \sqrt{}$

M1**A**1

[2]

[3]

		May .
Page 5	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606

	10002 00:000:111010:1120 0000	90	
5 (i)	Matrix multiplication	A1 M1	1
	$\mathbf{AB} = \begin{pmatrix} -2 & 2 & 8 \\ 1 & 3 & 20 \end{pmatrix} \text{ or } \mathbf{BC} = \begin{pmatrix} 22 \\ 39 \end{pmatrix}$	A1	700
	(1 3 20) (39) Matrix multiplication	M_1	
	(10)	A 1	
	(59)	A1	[4]
	$1(-3 \ 2) (-0.75 \ 0.5)$	B1+B1	
(ii)	$\frac{1}{4} \begin{pmatrix} -3 & 2 \\ -8 & 4 \end{pmatrix} \text{ or } \begin{pmatrix} -0.75 & 0.5 \\ -2 & 1 \end{pmatrix}$		
	Matrix multiplication $\begin{pmatrix} 1 & 4 & -2 & -4 \end{pmatrix}$ $\begin{pmatrix} 1 & -0.5 & -1 \end{pmatrix}$	M1 A1	
	$\frac{1}{4} \begin{pmatrix} 4 & -2 & -4 \\ 4 & -4 & -16 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & -0.5 & -1 \\ 1 & -1 & -4 \end{pmatrix}$	AI	F 43
			[4]
6 $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$	$=$ $3x^2 + 12x - 34$	B1	
(all	$m_1 m_2 = -1$ after differentiation	M1	
Grad	lient normal $=-\frac{1}{2}$	A1	
Find	s equation of normal $\left(y-8=-\frac{1}{2}(x-2)\right)$ or $y=-\frac{1}{2}x+9$	DM1	
(18,	(2) 2	B1	
(0, 9)		B1	
Mid	point (9, 4.5)	В1√	
Sho	vs midpoint lies on $4y = x + 9$	M1	
			[8]
7 (i)	10sin60 or 10cos30 or 5tan60 or $\sqrt{10^2 - 5^2}$	M1	
. (*)	$5\sqrt{3}$ or 8.66	A1	
			[2]
(ii)	$\left(\frac{16-5t}{12+8.66t}\right) \text{ o.e.}$	M1A1	[2]
(***)			[2]
(iii)	Equate x component to 0 1512 (when $t = 3.2$)	M1 A1	
(iv)	Substitute <i>t</i> into <i>y</i> component	M1	[2]
()	39.7 km	A1	[0]
			[2]

		www.
Page 6	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606

				G.
8	(i)	Uses	$s = r\theta$	M1 M1
	()		x-20	A1
	(ii)	Uses	$A = \frac{1}{2}r^2\theta$ $x^2 - 32$	M1
		$v^2 = v$	$c^2 - 32$	A1
		y	. 32	[
	(iii)		nate y or x	M1
			$5x + 54 = 0 \text{ or } y^2 - 5y - 14 = 0$	A1
			e 3 term quadratic and $y = 7$	M1 A1
		,		[
9	(a)	(i)	3628800	B1
	` /			
		(ii)	Evidence of 5! (=120) and 4! =(24) Evidence of 3!	B1 B1
			17280	B1
	(b)	(i)	Evidence of $\frac{6\times5(\times4\times3)}{(4\times3)\times2(\times1)}$ (=15) or $\frac{5\times4}{2(\times1)}$ (=10)	
	(b)	(1)	$(4\times3)\times2(\times1) \qquad 2(\times1) \qquad 2(\times1) \qquad (-10)$	B1
			Multiplies	M1
		(ii)	No cousins in 30 ways	A1
		(11)	Older cousin only in 60 ways or younger cousin only in 20 ways	B1 B1
			110	B1
			(or both cousins in 40 ways B1, subtract from 150 B1 answer 110 B1)] [
10	(i)	Finds	s f(2) or f(1)	M1
	. /	f(2)	= 8 + 36 + 2b + c	A1
			= 1 + 9 + b + c	A1
		c = 2	es f(2) = 2f(1)	M1 A1
				111
	(ii)		s quadratic factor	M1
			(x+3)	A1
			quadratic formula or finds $b^2 - 4ac$ or completes square	M1 A1
		p^{\cdot} –	4ac = -11 oe	AI [

		May .
Page 7	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606

	-	S.	
11 EITH	IER	177	8.
(i)	$s_{12} = 49.6 \text{ or } 24 + 101 \text{n } 13$	B1	To
	distance is 13.8	B1	00
(ii)	$v = (2t - 10) + \frac{10}{1 + t}$	B1,B1	Bridge Co
	Equate to 0 and collect terms	M1	
	$2t^2 - 8t = 0$	A1	
	t = 4 (or 0)	A1	
/***	D:00		[5]
(iii)	Differentiates v to find a	M1	
	$2-\frac{10}{(1+t)^2}$	A1	
		A1	
	1.9	Al	[3]
			[2]
11 OR			
(i)	v = 4	B1	Г13
(ii)	$s = 2e^{2t} - 12t^2$	B1+B1	[1]
()	Uses limits on $\int v dt$	M1	
	638	A1	
	030		[4]
(iii)	Differentiates <i>v</i> to find <i>a</i>	M1	
	$8e^{2t} - 24$	A1	
	Equate to 0 and solve	M1	
	$t = \frac{1}{2} \ln 3$ (or 0.549) (or $e^{2t} = 3$)	A1	
	-1.18 or 12 (1 – 1n 3)	A1	
			[5]