CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		2	
Page 2	Mark Scheme	Syllabus	2
	IGCSE – October/November 2012	0606	SD2

Mark Scheme Notes

Marks are of the following three types:

- Cambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

			· · ·
Page 3	Mark Scheme	Syllabus	S.
	IGCSE – October/November 2012	0606	Do.

The following abbreviations may be used in a mark scheme or used on the scripts:

- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{2}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme		Syllabus
		IGCSE – October/Nover	mber 2012	Syllabus 0606 Equate and attempt to solve Equate Mark final answers Both expressions must have 3 terms
1	7x + 5 = 3x -	- 13	M1	Equate and attempt to solve
	x = -4.5 o.e		A1	Equate and attempt to solve
	7x + 5 = 3x -		M1	Equate
	x = 0.8 o.e.		A1	Mark final answers
	OR		[4]	
	Square and I		M1	Both expressions must have 3 terms
		36(=0) o.e.	A1	Three terms
	(5x-4)(2x+1)(2x+		M1	Factorise or formula of three term
	x = 0.8 and x	z = -4.5	A1	quadratic.
	OR Plot $y = 7x $	+ 5 l	M1	Shane and intercents must be correct
	Plot $y = 7x $ Plot $y = 3x $		M1 M1	Shape and intercepts must be correct Shape and intercepts must be correct
	$\begin{array}{l} \text{Plot } y = +3x \\ x = 0.8 \end{array}$	- 13	A1	shape and increepts must be concer
	x = 0.8 x = -4.5		A1	
	л т.Ј			
	(dA)		B1,B1	
1	$\left(\frac{\mathrm{d}A}{\mathrm{d}r}\right) = 4\pi r$	$+10\pi$	M1	d <i>A</i>
		l dr	111	Their $\frac{dA}{dr}$
	Use $\frac{dA}{dA} = \frac{dA}{dA}$	$\frac{dr}{dt} \times \frac{dr}{dt}$ with $r = 6$		u/
	d <i>t</i> d <i>r</i> 6.8	d <i>t</i>	A1	Rounds to 6.8
	0.0		[4]	
	Doorronaata	$a a x^2 + b x + a [-0]$	M1	
	Rearrange to $(2x-1)(2x$	$ax^2 + bx + c = 0$	M1 M1	Factorise or formula
	(2x - 1)(2x - 0.5 and 3.5)	- /)[< 0]	A1	
	0.5 and 5.5 0.5 < x < 3.5		A1 A1	not \leq mark final statement.
			[4]	not > mark mai sutement.
1	(i) $0(2^3)$. 56		
1	(i) $8(2^3)$ or $448(x^5)$	r	B1 B1	Mark final answer
	$-448(x^5)$)	B1	Mark final answer
(i	i) $1120(x^4)$)	[2] B1	
ų	· · ·	r 1120 and their -448 used	M1	
	$1792(x^5)$		A1	
	1,72(3	,	[3]	
	(i) Evidor	a of 6 5 4 and 2 only	M1	Numbers listed but not added.
5	(i) Evideno 360	ce of 6, 5, 4, and 3 only	A1	
	500		[2]	
	(ii) Evidena	the of 2×3 for outside digits	B1	
		$ce of 2 \times 3$ for outside digits	B1	${}^{4}P_{2}$ used correctly.
	72		B1	Ť
			[3]	
j	(i) Express	as powers of 2	M1	At least one : 2^{6y-9} or 2^{4x-4y} o.e.
		ly reaches $3x + 2y = 6$	A1 AG	At least one 2° or 2° o.e.
			[2]	
(i	i) Express	as powers of 5	M1	Both correct 5^2 and 5^{3x-6} o.e.
Ì	y = 3x -	- 4 o.e.	A1	Three terms
	Attemp	t to solve simultaneous equations	M1	Equations must be linear
	$r = \frac{14}{2}$	nd $y = \frac{2}{3}$	A1	Accept decimals that round to correct 3s
	x =a	$\lim_{y \to -\infty} y = -$	A1	recept acommunic mut round to contect Je

Pa	ige 5	Mark Scheme		Syllabus
		IGCSE – October/Novemb	er 2012	0606 7330
7 (i)	$sec^2 4x \times 4$		M1 A1	One term only
(ii)	$x + \tan 4x \\ \div 4$		[2] B1 M1 A1	Syllabus 0606 One term only No additional terms isw
(iii)	Correct us	se of limits	[3] M1	Expression must have 2 integrated terms in x from (ii).
	$k = \frac{1}{8}$		A1 [2]	Rounds to 0.125. Accept $\frac{\pi}{8}$ or 0.125π
3 (i)	$(b=)\frac{7-4}{8-2}$	$\frac{1}{2} = \left[\frac{1}{2}\right]$	B1 M1	Finding gradient Finding y intercept
	$(\lg a) = 3$	blgx or lgy - 4 = b(lgx - 2)	M1	$\lg y = c + m \lg x$ is sufficient
	a = 1000 $y = 1000x$	or 10^3 ^{0.5} or $1000\sqrt{x}$	A1 A1 [5]	
(ii)	<i>m</i> = 1		B1	
(iii)	<i>c</i> = 6		[1] B1 [1]	
) (i)	420 α	80 (40 OR (40) (40) (420) (420) (420) (40) (420) (40) (40) (40) (40) (40) (40) (40) (4	B1	Correct triangle
	$\frac{\sin \alpha}{80} = \frac{1}{2}$ $\alpha = 7.03$	420 or 7	M1 A1 A1√ [™]	Use of sine or cosine rule in any triangle with some of $80,420$, their <i>v</i> and an angle.
(ii)	v	223 $(230 - \alpha)$ $\frac{420}{\sin 40}$	[4] M1	Use of sine or cosine rule in any triangle with 80 or 420 or both.
	v = 478		A1	
	Use time	$\frac{1000}{v}$	M1	v calculated from a triangle
	2.09 hou	rs or 2 hours 5minutes	A1 [4]	Units required

Page 6		Mark Scheme			Syllabus r
IGCSE – October/November 2012 0606					
0 (i)	Integrate	to find v	M1	Incre	Syllabus 0606 ease of powers seen at leas the three term quadratic not penalize $t = -2$.
	v = 4t - t	(+ c)	A1		1
	Use $t = 0$ v = 4t - t	v = 12 to find $c = 12$	B1	0.1	a dhara dama ana dardia
	v = 4t - t $t = 6$	+ 12	M1 A1		the term quadratic term quadratic term $t = -2$.
	i O		[5]	DUI	
(ii)	Integrate		M1	Incre	ease of powers on at least 2 terms
	$s = 2t^2 - $	$\frac{t^3}{1} + 12t$	A1√ [^]	3 ter	ms
		3	A1	cao	
	<i>s</i> = 72		[3]		
1 (a)	$\tan x = -2$	2.25	B1		
()	114		B1		nds to 114.0 isw
	294		B1√	Thei	ir 114 + 180 from tan function isw
(b)		1	[3] B1	G	1
(0)	Uses cos	$\operatorname{ec} y = \frac{1}{\sin y}$		Seer	n anywhere
		hadratic in sin y : $12\sin^2 y + \sin y - 1$	M1	Mus	t be 3 terms
	[= 0]		1011	10103	
		$1(2\sin y + 1)[= 0]$	M1		orise or formula of 3 term quadratic
	14.5 and		A1		2 values isw
	165.5 and	1 340.5	A1 [5]	The	other 2 values isw
(c)	(z)	3			
	$\cos\left(\frac{z}{3}\right) =$	= <u>-</u> 5	B1		
				G 1	
	$\frac{z}{3} = 0.927$	'	M1		ves their equation in radians
	z=2.78 to	o 2.79 inc	A1	isw	
	z = 16.1		A1	Rou	nds to isw
			[4]		
2 EITI	HER				x
	$y A e^{-\frac{1}{4}x} (+$)	M1	Integ	grate : $e^{-\frac{x}{4}}$ seen
(i)		· c)	A1		
	A = -4 Substitute	(0, 10)	DM1		
		1			
	y=14-4e	. 4	A1		
	14 - 4e		A1		
<i>/</i>	-		[5]		
(ii)		$A ext{ is } y - 10 = x$	B1 P1		
	Gradient ta	angent at B is e	B1		
	Tangent at	B is y + 4e - 14 = ex + 4e	B1√^	With	n their gradient and answer to (i)
	-	ations of tangents	M1	Two	linear equations
	$x = \frac{4}{1-e}$ o	.e.	A1		

Page 7		Mark Sch	eme	Syllabus
		IGCSE – October/N	ovember 2012	0606 73
				$\frac{Syllabus}{0606}$ r $Ae^{-\frac{x}{3}}$ only one term
12 OR		1		_x 97:
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$	$e^{-\frac{1}{3}x}$	M1	$Ae^{-\frac{x}{3}}$ only one term
	at (0, 9)	$\frac{dy}{dt} = -\frac{1}{dt}$	A1	
	Grad nor		M1	Use of $m_1 m_2 = -1$
	Point Q i	s (-3, 0)	A1	Condone $x = -3$
			[4]	
(ii)	Area rec	tangle 24 + 3e (32.1)	M1	Their $3 \times \text{their}(8+e)$
	f ⁰ -	$\frac{x}{2}$		$-\frac{x}{2}$
	$\int_{-3}^{0} 8 + e^{-1}$	3 dx	M1	Integrate: $8x$ and e^{-3} seen
	$=\left[8x-3e^{2}\right]$	e ⁻³	A1	
	L		111	
	21+3e (2	9.1)	M1	Correct use of limits their -3 and 0
	Shaded a	rea =3	A1	
			A1	
			[6]	