www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	.0	V
	IGCSE – October/November 2012	0606	100	

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	.0	V
	IGCSE – October/November 2012	0606	800	

Page 3	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606
The follow	ing abbreviations may be used in a mark scheme or ι	used on the scripts:
AG	Answer Given on the question paper (so extra check the detailed working leading to the result is valid)	syllabus 0606 used on the scripts: king is needed to ensure that
BOD	Benefit of Doubt (allowed when the validity of a so clear)	lution may not be absolutely
CAO	Correct Answer Only (emphasising that no "follow this allowed)	rough" from a previous error
ISW	Ignore Subsequent Working	
MR	Misread	
PA	Premature Approximation (resulting in basically corraccurate)	ect work that is insufficiently

Penalties

SOS

MR - 1A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.

See Other Solution (the candidate makes a better attempt at the same question)

- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

		my
Page 4	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606

1	1.2 $5x + 7 = -13$ or $25x^2 + 70x + 49 = 169$ 5(5x - 6)(x + 4) = 0	B1 M1 A1 [3]	correct positive value correct method to find second value correct final answer
2	$\mathbf{(i)} \frac{1}{6 \times 7 - 8 \times 4} \begin{pmatrix} 6 & -8 \\ -4 & 7 \end{pmatrix}$	B1B1 [2]	B1 for each part of the inverse
	(ii) $\binom{x}{y} = \frac{1}{10} \binom{6}{-4} \binom{-8}{7} \binom{39}{23}$	M1	pre-multiply $\binom{39}{23}$ by their inverse
	$= \begin{pmatrix} 5 \\ 0.5 \end{pmatrix}$	A1 [2]	correct answers, correctly associated
3	$(3\sqrt{3}-1)^2 = 27-6\sqrt{3}+1$	M1	multiplication, including $a\sqrt{3} \times b\sqrt{3} = 3ab$
	or $(3\sqrt{3} - 1)(2\sqrt{3} + 3) = 18 + 7\sqrt{3} - 3$	A1	a correct expansion
	$\times \frac{2\sqrt{3} + 3}{2\sqrt{3} + 3} \text{ or } 28 - 6\sqrt{3} = \frac{a\sqrt{3} + b}{3} (2 - 3)$	M1	valid method to obtain a value for a or b
	$\frac{38\sqrt{3} + 48}{3} \text{ or } a = 38, b = 48$	A1 [4]	correct answers

		my
Page 5	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606

	T	M.
4 (16)		correct vector for \overrightarrow{XZ}
$\overrightarrow{XZ} = \begin{pmatrix} 16\\20 \end{pmatrix}$	B1	correct vector for XZ
$\overrightarrow{OY} = \begin{pmatrix} 4 \\ -27 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 16 \\ 20 \end{pmatrix} \text{or} \begin{pmatrix} 20 \\ -7 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} -16 \\ -20 \end{pmatrix}$	M1	valid method for \overrightarrow{OY}
$= \begin{pmatrix} 16 \\ -12 \end{pmatrix}$	A1	correct vector for OY
$\left \overrightarrow{OY} \right = \sqrt{16^2 + \left(-12\right)^2} \text{ oe}$	M1	uses Pythagoras to find length of \overrightarrow{OY}
unit vector in direction of $\overrightarrow{OY} = \begin{pmatrix} 0.8 \\ -0.6 \end{pmatrix}$ oe	A1 [5]	correct vector expression
OR $\overrightarrow{OY} - \overrightarrow{OX} = 3\overrightarrow{OZ} = 3\overrightarrow{OY}$	B1	correct vector equation
$4\overrightarrow{OY} = \begin{pmatrix} 4 \\ -27 \end{pmatrix} + 3 \begin{pmatrix} 20 \\ -7 \end{pmatrix} = \begin{pmatrix} 64 \\ -48 \end{pmatrix}$	M1	collect \overrightarrow{OY} s and substitute for \overrightarrow{OX} and \overrightarrow{OZ}
$\overrightarrow{OY} = \begin{pmatrix} 16 \\ -12 \end{pmatrix}$ etc.	A1	correct vector for OY
$OR \overrightarrow{OY} = \frac{\overrightarrow{OX} + 3\overrightarrow{OZ}}{4}$	B1	correct use of intercept theorem
$=\frac{\binom{4}{-27}+3\left(\frac{20}{-7}\right)}{4}$	M1	substitute for \overrightarrow{OX} and \overrightarrow{OZ} and divide
$= {16 \choose -12}^4 \text{ etc.}$	A1	correct vector for <i>OY</i>

		2.
Page 6	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606
	·	

5	$mx + 2 = mx^{2} + 7x + 11$ $mx^{2} + 7x - mx + 9 = 0$ $(7 - m)^{2} - 4 \times m \times 9 \sim 0$ $m^{2} - 50m + 49 \sim 0$ $(m - 1)(m - 49), m = 1, 49$ $1 < m < 49$	M1* A1 M1dep* A1 M1 A1 [6]	eliminates either y or x correct equation compares discriminant with 0 correct quadratic solves 3-term quadratic for m correct answer
6	$\sec^2 x = \frac{1}{p^2}$	B1	correct expression for $\sec^2 x$ in terms of p
	$\tan^2 x = \sec^2 x - 1 = \frac{1}{p^2} - 1$	M1 A1 [3]	substitution in correct formula (ps only) correct answer, oe
	OR $\sin^2 x = 1 - p^2$ $\tan^2 x = \frac{\sin^2 x}{\cos^2 x} = \frac{1 - p^2}{p^2}$	B1 M1 A1	correct expression for $\sin^2 x$ in terms of p substitution in correct formula (p s only) correct answer, oe
	OR $\sqrt{1-p^2}$ $\frac{1}{p}$ $\tan x = \frac{\sqrt{1-p^2}}{p}$	B1	'opposite' is $\sqrt{1-p^2}$
		M1	$tanx = their opposite \div their adjacent$
	$\tan^2 x = \frac{1 - p^2}{p^2}$	A1	correct answer, oe
	(b) $\cot^2\theta + 2(\cot\theta\tan\theta) + \tan^2\theta$	B1	correct squaring of bracket
	$\cot^2 \theta = \csc^2 \theta - 1 \text{ or } \tan^2 \theta = \sec^2 \theta - 1$ completion "AG"	B1 B1 [3]	use of a correct relevant formula correct completion

		my.
Page 7	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606

_		T	6
7	$\int \left(x^{\frac{3}{2}} + 3x^{\frac{1}{2}}\right) dx$	B1 M1	correct expression in terms of indices increase fractional power by 1 correct answer, ISW
	$\frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}}(+c)$	A1 [3]	correct answer, ISW
	(b)		
	$\frac{k}{2x+5}$ oe	M1	integral of correct form, k a constant
	$\frac{-10}{2x+5}$ oe	A1	correct integral, ignore '+ c'
	$\frac{k}{2\times10+5}-\frac{k}{5}$	M1	their integral with $x = 10$ subtract their integral with $x = 0$
	1.6	A1√ [4]	correct answer, ft their $k \left(= \frac{-4}{25}k \right)$
8	gradient $\frac{9-3}{1-(-2)} (=2)$	B1	correct gradient
	(AD) $y-5=2(x-4)$ or $y=2x-3$	B1√	correct equation for AD , ft their m_{AD}
	(CD) $y-9=-\frac{1}{2}(x-1)$ or $x+2y=19$	M1 A1	uses $m_1m_2 = -1$ and $x = 1$ and $y = 9$ in equation of line correct equation for CD
	solves equation for AD with equation for CD D is $(5, 7)$	M1 A1	solving equations for a value of x or y x = 5, y = 7
	area = $\frac{1}{2} \begin{vmatrix} 4 & -2 & 1 & 5 & 4 \\ 5 & 3 & 9 & 7 & 5 \end{vmatrix} = \frac{1}{2} 26 - 66 $	M1	a correct method to calculate the area of the trapezium
	$or = \frac{1}{2} \left(\sqrt{5} + \sqrt{45} \right) \sqrt{20}$		
	= 20	A1 [8]	correct answer
	OR(X on BC, AX//DC)		
	gradient = $\frac{9-3}{1-(-2)}$ (= 2)	B1	correct gradient
	(BC) $y-9=2(x-1)$ or $y=2x+7$	B1	correct equation for BC
	(AX) $y-5=-\frac{1}{2}(x-4)$ or $2y=-x+14$	M1 A1	uses $m_1m_2 = -1$ and $x = 4$ and $y = 5$ in equation of line correct equation for AX
	solves equation BC with equation AX $X(0, 7)$	M1 A1	solving equations for a value of x or y $x = 0, y = 7$
	$area\Delta + area rectangle$	M1	
	$=\frac{1}{2}\sqrt{20}\times\sqrt{20}+\sqrt{20}\times\sqrt{5}$		a correct method to calculate the area
	= 20	A1	correct answer
		1	1

			V .		
Page 8	Mark Scheme	Syllabus	· 6	V	
	IGCSE – October/November 2012	0606	100		
			7/	0	۹

	r	6
9 (i) x^3	B1 [1]	correct answer
(ii)	[1]	The state of the s
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A2,1,0 [3]	correct answer graph of x^2y against x^3 , linear axes 4, 1–3, 0 points plotted correctly
(iii) $a = 9.5$ to 10.5	B1	correct answer
$gradient = \frac{y_2 - y_1}{x_2 - x_1}$	M1	finding numerical value for the gradient
$x_2 - x_1$ $b = -0.6 \pm 0.01$	A1 [3]	correct answer
(iv) $y = \frac{a}{13.69} + 3.7b$ or $13.69y = a + 50.653b$	M1	appropriate substitutions or read graph at 50.653 and divide value by 13.69
$=-1.48\pm0.04$	A1 [2]	correct answer
10 (i) $x^2 + 80^2$ seen	B1	
$time = \frac{distance}{speed}, oe$	B1	
speed	[2]	
(ii)		
$\left(\frac{dT}{dx} = \right) \frac{-1}{10} + \frac{x}{6\sqrt{x^2 + 6400}}$	M1* A1A1	attempt to differentiate given expression A1 each correct unsimplified term
$\frac{x}{6\sqrt{x^2 + 6400}} = \frac{1}{10} \text{ oe}$	M1dep*	attempt to solve $\frac{dT}{dx} = 0$, to include squaring both sides
x = 60	A1	correct answer for x
$T = 30\frac{2}{3}(30.7)$	A1 [6]	correct answer for T

			2.		
Page 9	Mark Scheme	Syllabus	.0	V	
	IGCSE – October/November 2012	0606	10.	-	
				0	

	1	62
11 (a) $2^{x-2} = 100^2, \frac{x-2}{2} = \log_2 100$	B1	correct expression
or $2^{\left(\frac{x}{2}-1\right)} = 100$		COM
$x = 2 + \frac{4}{0.301}$	M1	valid attempt to obtain value for x
=15.3	A1 [3]	correct answer
(b)		
$\log_y 512 = 3 \text{ or } 3 = \log_y y^3$	B1	correct relevant use of rule for logarithms
or $\log_y k = \frac{\log k}{\log y}$ (twice)		
$y^3 = 512 \text{ or } 2 = \frac{y^3}{256}$	M1	attempt to solve
y = 8	A1 [3]	correct answer
(c) $\frac{6^{5z-2}}{6^{2z}} = \frac{6^{3(z-1)}}{6^{2(3-z)}}$	M1	attempt to express at least two elements in terms of 6^z or $\log 6$
or $\log 6^{(5z-2)} - \log 6^{2z} = \log 6^{3(z-1)} - \log 6^{2(3-z)}$	A1	correct expression
5z-2-2z = 3z-3-(6-2z) oe	M1	uses rule of indices or logarithms correctly, accept index/log format
z = 3.5	A1 [4]	correct answer
12E (i) $(2x+8)^2-9$ or $a=2, b=8, c=-9$	B1B1B1 [3]	B1 for each correct value
(ii) $f^{-1}(x) = \frac{\sqrt{(x+9)} - 8}{2}$ oe	M1	inverse of form $\frac{\sqrt{(x \pm c)} \pm b}{a}$
(iii)	A2,1,0√ [3]	3, $1-2$, 0 correct values, ft their a , b and c
$\left(\frac{2}{x} + 8\right)^2 - 9 = 135 \text{ or } \frac{4}{x^2} + \frac{32}{x} + 55 = 135$	M1	apply fg (not gf) or replace x by $\frac{1}{x}$
$\frac{2}{x} + 8 = 12(\text{or} - 12) \text{ or } 80x^2 - 32x - 4 = 0$	A1	correct equation
	M1	valid method for solving their equation
x = 0.5 oe, only	A1 [4]	correct answer

		May May 1
Page 10	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606

	I	100
120 (i) 3.5	B1	correct answer
	[1]	attempt at inverse, involving squaring correct inverse
2		00
(ii) $y^2 + 7 = 2x$	M1	attempt at inverse, involving squaring
$h^{-1}(x) = \frac{x^2 + 7}{2}$	A1	correct inverse
$\frac{1}{2}$	[2]	
(iii) $\frac{3x-4}{x-2} = x$, $x^2 - 5x + 4 = 0$	M1	equate $k(x)$ with x and obtain quadratic equation
x-2	1411	equate w(x) with x and obtain quadratic equation
(x-4)(x-1)	M1	solve three term quadratic
	A1	correct answer
x = 4 only	[3]	correct answer
	[-]	
(iv)		
(3x-4)	3.61	1
$\frac{3\left(\frac{3x-4}{x-2}\right)-4}{\left(\frac{3x-4}{x-2}\right)-2}$	M1	substitute to obtain expression for k^2
$\frac{(x-2)}{(3x-4)}$	A1	correct unsimplified expression
$\left[\frac{3x-1}{x-2}\right]-2$	711	Control Manual Confession
$\frac{3(3x-4)-4(x-2)}{3x-4-2(x-2)}$	M1	multiply numerator and denominator by $(x-2)$, oe
3x-4-2(x-2)		
$5-\frac{4}{}$		
$5-{x}$	A1	correct answer
	[4]	