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Key messages 
 
Candidates should be reminded to read the questions carefully, ensuring that they are meeting the full 
demands of the question. Special attention should also be paid to the accuracy of a candidate’s work. The 
rubric clearly states the accuracy required unless specified otherwise. This means that the working of 
solutions should be to a greater level of accuracy. 
 
 
General comments 
 
Many candidates performed well, showing a good understanding of the syllabus requirements and being 
able to apply the necessary techniques correctly. There did not appear to be any issues with timing and the 
majority of candidates set out their solutions in a clear and concise fashion. 
 
 
Comments on specific questions 
 
Question 1 
 
Most candidates adopted the correct approach of forming a quadratic equation in x only and making use of 
the discriminant, obtaining the correct critical values. Errors occurred when attempting to give the correct 
range of values for a, with some candidates omitting to form inequalities. There were few errors in algebraic 
and arithmetic manipulation. 
 

Answer: > < −11, 5a a   

 
Question 2 
 
Many completely correct solutions were seen, with candidates exhibiting a good understanding of indices. 
 

Answer: 
13

6
a = − , 0,b =  1c =   

 
Question 3 
 

The great majority of candidates correctly dealt with the change of base for 
25

log x  and the application of  

the law of logarithms concerning indices, obtaining an equation involving 
5

log x . Many completely correct  

solutions were seen. 
 

Answer: 125x =   

 
Question 4 
 

(i) There were some errors in the sketching of the graph of 3 2y x= + , with the vertex of the graph 

appearing on the y-axis rather than on the x-axis. The graph of 2y x= −  was usually sketched 

correctly. Candidates should realise that it is good practice to mark in the numerical values of the x- 
and y- coordinates for the intercepts on their graphs. 
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(ii) Most candidates chose to make use of two separate linear equations in order to solve the given 
equation. Solutions using a quadratic equation formed by squaring both sides of the given equation 
were seldom seen. There were many correct solutions seen. 

 

Answer: (ii) 
1

3
x = − , 5x = −   

 
Question 5 
 
It was evident that candidates are well practiced in distinguishing when to use permutations and  
when to use combinations. 
 

(a) (i) Most candidates obtained the correct permutation in the form 9
6

P  and went on to evaluate this 

correctly. However, there were quite a few candidates who did not obtain the correct evaluation. 
 
 (ii) Most candidates realised that a product of 3 permutations was needed, producing a correct 

response. 
 
 (iii) Candidates needed to realise that there were two different cases to consider as the symbols at the 

start and finish of the password could be interchanged. Provided this was done and the fact that 
again use of permutations was the best approach, many candidates obtained the correct answer. 

 
(b) The majority of candidates realised that this part of the question involved combinations and 

produced correct answers for both parts. 
 
Answers: (a)(i) 60480  (ii) 144  (iii) 1680  (b)(i) 2100  (ii) 420 
 
Question 6 
 
(i) It was essential that candidates used the correct notation to write down the range of the given 

function. Far too many responses were of the type > 6,x  rather than the acceptable ( )f 6x >  or 

> 6.y  

 
(ii) Most candidates were able to find the inverse of the given function giving their final answer using 

the correct notation. Some candidates did not state the range and domain of this inverse function 
and many of those that did used incorrect notation as in part (i). The relationship between the 
domain and range of a function and its inverse was clearly not understood by many candidates. 

 
(iii) Most candidates recognised the notation and made the appropriate differentiation. 
 

(iv) Many correct solutions were seen with candidates obtaining 
1
ln2,

4
  but then going on to give a 

rounded decimal answer. Those that did this were not penalised on this occasion, but candidates 
and centres should be aware of the meaning of the request for an exact answer. 

 

Answers: (i) ( )f 6x >   (ii) ( ) ( )1 1
f ln 6

4
x x

−

= − , 6x > , ( )1
f x
−

∈�   (iii) 4
4e

x   (iv) 
1
ln2

4
 

 
Question 7 
 
(i) Provided candidates were able to obtain the correct relationship between the two remainders, 

correct values for a and for b were usually obtained. Candidates were expected to show that 6a =  

by solving two simultaneous equations.  A check that 6a =  in both simultaneous equations leading 

to the correct value for b was also an acceptable method. 
 
(ii) Candidates using synthetic division gave answers that were too great by a factor of 2. Care should 

be taken when using this method. It was intended that candidates use observation or algebraic 
long division for this part of the question. 
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(iii) Candidates were given credit for an attempt to factorise their quadratic expression from part (ii). 
Some candidates chose to carry on and give solutions for the expression equated to zero. These 
were not penalised provided the linear factors were written down. 

 

Answers: (i) 2b =   (ii) ( )( )2
2 1 3 5 2x x x− + −   (iii) ( )( )( )2 1 3 1 2x x x− − +   

 
Question 8 
 
(i) Most candidates were able to find the gradient of the given graph, together with the intercept on the 

vertical axis. There were some errors when applying the logarithmic form of the given equation, 
allocating the values of A and of b incorrectly. 

 
(ii) A correct approach either using the given graph or the equation found in part (i) was applied by 

most candidates.  
 
(iii) A correct approach either using the given graph or the equation found in part (i) was applied by 

most candidates. 
 

Answers: (i) 27.5A = , 1.2b =   (ii) 3.84  (iii) 113 or 112 

 
Question 9 
 
(i) Very few incorrect answers were seen, with most candidates applying the given relationship 

between the two areas correctly. It was hoped that candidates would obtain and work with 
π

4
, 

rather than a decimal equivalent. If a decimal equivalent was used, it needed to be to more than 
two decimal places. 

 
(ii) Most candidates applied a correct method, but did not give their solution to enough accuracy to 

start with to justify the given answer correct to 2 decimal places. It was expected that candidates 

state that, after their workings, 7.180,r =  or 7.1803r = , either of which round to the given answer 

correct to 2 decimal places. 
 
(iii) Many correct solutions were seen with a correct approach to the calculation of the perimeter being 

applied by most. 
 
(iv) Many correct solutions were seen with a correct approach to the calculation of the required area 

being applied by most. There were some inaccurate answers given due to premature 
approximation in some cases. Candidates should ensure that they are working to the required level 
of accuracy throughout. 

 

Answers: (i) 
π

4
  (iii) 11.6  (iv) 1.11 or 1.08 

 
Question 10 
 
(i) Most candidates recognised the need to differentiate the given expression as a product, with very 

few errors being seen. 
 
(ii) There were many very good attempts at this part, with many completely correct solutions seen. 

Candidates recognised integration as the reverse of differentiation and took note of the instruction 
‘Hence’.  Most problems were not with making use of part (i) but with the algebraic simplification of 
a correct expression to the required form. Some candidates did not recognise that they needed to 

‘take out’ a common factor of ( )
3

22 1x −  from their two-term expression. 
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(iii) Provided their answer to part (iii) was in the required form, candidates were given credit for 
applying the limits correctly. It should be noted that the word ‘Hence’ is again used, meaning that 
the result from part (ii) must be used in this part. Some candidates chose to use the numerical 
integration function on their calculator in order to answer this part. This did not gain any credit. 

 

Answers: (i) ( ) ( )
1 3

2 23 2 1 2 1x x x− + −   (ii) 
( )

( )

3

22 1
3 1

15

x

x

−

+   (iii) 
4

15
  

 
Question 11 
 
(i) Most candidates were able to produce a completely correct solution which was clearly set out and 

contained all the necessary steps. 
 
(ii) Very few incorrect solutions were seen, with candidates making use of part (i) to solve a quadratic 

equation in tanθ . It should be noted that final answers, when in degrees, should be given correct 

to 1 decimal place. 
 

Answer: (ii) o o o o
63.4 ,123.7 ,243.4 ,303.7  
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ADDITIONAL MATHEMATICS 
 
 

Paper 0606/22 

Paper 22 

 
 
Key messages 
 
In order to do well in this paper, candidates need to demonstrate that they are able to apply their skills. They 
need to use their knowledge of concepts and apply appropriate techniques to solve problems. Candidates 
need to read each question carefully and answer fully. This includes taking note of instructions such as “Do 
not use a calculator in this question” or “You must show all your working”. Whilst calculators are a useful tool 
and candidates should be encouraged to use them to check their solutions throughout, efficient use of a 
calculator is not an assessment objective of the syllabus. Candidates who omit to show key method steps in 
their solution to a question, through using a calculator, are generally not awarded full marks. Candidates 
should take care to ensure that, when solving problems involving angles, their calculator is set to the 
appropriate mode to answer the question correctly. 
 
 
General comments 
 
Many candidates gave well-presented and clearly thought-out solutions. Most candidates were clearly very 
well prepared for the examination. The level of algebra was a little challenging in places. Many candidates 
demonstrated good manipulative skills. This was exemplified in Question 11. Some candidates could 
improve by understanding that their working must be detailed enough to show their method clearly, with each 
key step being shown as this can allow method marks to be awarded; it is essential if a question asks 
candidates to “Show that…” This indicates that the answer has been given to the candidates and that the 
marks will be awarded for showing how that answer has been found. The need for this was highlighted in 
Question 9(ii) and Question 12(i). Showing clear and full method is also very important if the use of a 
calculator is not allowed, such as in Question 6. There were no rounding issues in this paper, although 
some candidates omitted to take notice of the word “exact” in Question 9(iii). Candidates would do better if 
they realised that answers that are the full length of their calculator display are very unlikely to be exact. As 

the angle was measured in radians, the angle should have been given as a multiple of π. No candidate 
seemed to be short of time. 
 
When answers are written in alternate locations within their script, candidates should indicate where they 
have written the continuation of their solution. 
 
 
Comments on specific questions 
 
Question 1 
 
This question was well-answered by the majority of candidates. It proved to be a good, strong start to the 
question paper. 

(i) Many candidates rewrote the expression as ( )
1

25 9y x
−

= −  and used the chain rule for 

differentiating a function of a function. Those who did this were usually successful. Some 
candidates used the quotient rule or, on occasion, the product rule for differentiation. These were 

less successful. Some candidates used 
d(5)

1
dx

=  and produced a complicated expression that they 

then attempted to simplify. Extra practice in identifying the most efficient method of solution may 
have helped these students. 
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Question 5 
 
(i) Most candidates understood how to apply the general binomial formula correctly and did so. Some 

candidates may have improved if they had taken note of the instruction to give each term in its 
simplest form. These candidates tended to leave the third term as 5103(kx)

2
. 

 
(ii) The majority of candidates formed a correct equation and went on to solve it successfully. A small 

number of candidates misinterpreted the information, doubling the coefficient of x
2
, rather than x. 

Some candidates equated terms rather than coefficients. This resulted in a spurious x component. 
These candidates would have improved if they had interpreted the word “coefficient” correctly. 

 

Answers: (i) 2 2
2187 5103 5103kx k x+ +   (ii) k = 2 

 
Question 6 
 
Candidates demonstrated good problem solving skills when answering this question. Answers were 
generally well set out and progressed logically. Most candidates constructed a correct proportional 
relationship. Most of these then proceeded to carry out a correct manipulation of terms to find the solution. 
The majority of candidates provided enough evidence of method for it to be clear that a calculator had not 

been used in the solution. Candidates who used 
3

6

p q+
 rather than x in their calculations made the 

working more complicated than was necessary. Occasional arithmetic slips were made. A very small number 
of candidates attempted to find the area of each parallelogram. These candidates made no real progress 
towards a solution.  
 

Answer: p = −27, q = 23 
 
Question 7 
 
(a) Candidates clearly understood the correct method of solution. Some candidates made sign errors. 
 
(b) (i) Candidates who were careful with signs and arithmetic produced clear and accurate answers. 

Other candidates would have improved if they had taken more care with the arithmetic. For 

example, some candidates calculated 4 × 0 = 4 when finding the det C. A few candidates forgot to 
transform C by swopping the terms on the leading diagonal or changing the signs on other diagonal 
or both. 

 
 (ii) The simplest method of solution was to post-multiply C by D. Candidates who realised this usually 

arrived at the correct solution quite quickly. Occasional arithmetic errors were made. Those 
candidates who attempted to calculate the matrix product DC may have done better if they had fully 
understood that matrix multiplication in non-commutative. A small number of candidates chose to 
find D

-1
 and multiply by a general 2 by 2 matrix. This method of solution, forming and solving two 

pairs of simultaneous equations, whilst correct, was far longer. It was more likely that an error was 
made by candidates choosing this option. 

 

Answers: (a) 
14 3 2

23 6 1

− 
 
− 

  (b) (i) 
1 01

4 22

 
−  

− − 
  (ii) 

8 6

13 7

− − 
 
 

 

 
Question 8 
 
(i) Most candidates provided excellent answers with full and clear solutions being given. Candidates 

who chose to use the substitution x = 2y – 2 had a more straightforward solution as the coefficients 

of the terms they were working with were integers. Candidates who chose to use 
2

2

x
y

+
=  

needed to work with fractions. Occasionally, these candidates made sign errors. A very small 
number of candidates made no progress with this part of the question.  

 

(ii) A small number of candidates stated the coordinates of the point (−2, 0) as (0, −2) in part (i) of this 
question. Whilst this usually was ignored in part (i), it did affect the accuracy of the answer to part  
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(ii) Candidates chose to use Pythagoras’ theorem and gradient relationships in roughly equal 
measure. Candidates were equally successful. A small number of candidates attempted to find the 
equations of the line segments that are the sides of the triangle ABC or found the area of the 
triangle.  

 

Answer: (i) (−2, 0), (2, 2) 
 
Question 9 
 
(i) Some very good solutions were presented to this problem. More able candidates found the correct 

trigonometric ratios representing the sides TR and RS. Many candidates did this using simple 
ratios and definitions. Other candidates used appropriate trigonometric identities. A small number 

of candidates chose an incorrect ratio. Candidates who left their ratios in terms of sin θ and cos θ 
and tried to combine them as a single, compound fraction, often made sign errors.  

 
(ii) Candidates found this part of the question more challenging. Candidates who wrote the sides TR 

and RS directly in terms of cosec θ and cot θ in part (i) made fewer errors in this part, presenting 
solutions that produced the requested result more easily. Candidates who wrote their answers to 
part (i) as three separate terms also arrived at the given result more swiftly.  

 
(iii)  There were a good number of correct answers given to this part. Candidates usually recognised 

the correct process and applied it. Often solutions were fully correct. Some candidates had their 
calculators in degree mode rather than radian mode and gave their answer in degrees. Rereading 
the question may have prevented this error. Other candidates would have done better if they had 
taken notice of the word “exact” in the question. Decimal answers were not accepted. Most 
candidates earned at least one of the two marks available. 

 

Answers: (i) 
cot cosec

1
2 2

x
θ θ

= − −   (iii) 
3

π

 radians 

 
Question 10 
 
(a) The many candidates who carefully and correctly formed p + 2q and equated to the given 

expression, answered this part of the question well. 
 
 (i) Some candidates made sign errors. Other candidates misinterpreted the given expression as 

α β+ −( )( 20 )i j . Few candidates used the convention of underlining vectors to make them distinct 

from the scalars. Perhaps some candidates would have reduced the number of errors they made if 
they had used this convention. 

 
 (ii) Candidates answered this part well. Most realised they needed to find the magnitude of 15i – 20j 

and divide by it. A small number of candidates only found the magnitude or only found 15i – 20j.  
 
(b) There were a good number of fully correct solutions seen. Some candidates did not collect the 

components in a. Again, it may be that, if candidates use the convention of underlining vectors 
when writing them in lower case font, they realise the need to collect the components to complete 
the answer to the question. Several candidates misread or misinterpreted the given ratio. 
Candidates who did this were less likely to have marked values on the diagram. This may have 
helped reduce the interpretation errors made. 

 
(c) Successful candidates used one of two methods to answer this part. Either they formed a correct 

proportional relationship using ratios of scalars and solved, or they introduced a second scalar and 
formed a pair of equations to solve in that scalar. A very good number of candidates scored full 
marks here. A small number omitted to discard the negative solution to the equation. A few 
candidates stated that parallel vectors have equal magnitude or equated the magnitudes and 
attempted to solve. Candidates who attempted to use the magnitude in some way were not 
successful. 

 

Answers: (a)(i) α = 2, β = 13 (ii) 
 15 – 2

2

0

5

i j
  (b) − λ + λ  (1 )a b   (c) µ = 3  
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Question 11 
 
(i) This question was very well answered. A few candidates forgot that when taking a square root they 

should also have considered the negative solution to check if it was an appropriate solution. 
Rereading the question may have helped these candidates, as they are clearly asked for the 
stationary points rather than a stationary point. Most candidates used the quotient rule with only a 

few using the product rule. Some candidates evaluated y as 
1

1 1

−

− +

 when x = −1 and therefore 

discarded that point. Some candidates mismatched x- and y-coordinates or made careless sign 
errors when finding the y-coordinates. A few candidates found the x-coordinates only. 

 
(ii) Most candidates applied the chain rule for differentiating a function of a function and did so 

correctly, Few candidates were able to manipulate the algebra successfully to the required form. 
Some of these candidates did see that the key to the solution was to factor out (x

2
 + 1) and cancel. 

Some candidates did manage to divide out at a later stage in their solution, but this was far less 
straightforward. Some good solutions were spoiled by sign errors. More attempts using the product 
rule were seen in this part. 

 
 Several candidates made no attempt to find the nature of the stationary points. Again, rereading 

the question may have prevented this omission. The candidates that did attempt to determine the 
nature of the stationary points all used the second derivative test. These candidates were generally 
successful. A small number made an incorrect determination and some candidates did not state 
the test fully or clearly enough to be credited. 

 

Answers:  (i) 
 
 
 

1
1,

2
, 
 
− − 

 

1
1,

2
  (ii) 

−
=

+

2 3

2 2 3

d 2 6
,

d ( 1)

y x x

x x
  maximum at x = 1, minimum at x = –1 

 
Question 12 
 
(i) Several candidates verified that t = 2 resulted in v = 0 by substituting the value 2 into the 

expression for v and showing that it came to 0. This was partially correct, but not sufficient for full 
credit as these candidates had not shown this was the first point at which v = 0. These candidates 
would have done better if they had realised that, when asked to show that something is true, they 
should apply a method which results in that value, rather than simply using the given value to verify 
the given result. In this case, that required solving the quadratic expression for v = 0 and arriving at 
the two solutions t = 2 and t = 5, resulting in the first point of instantaneous rest being when t = 2, 
as given. 

 

(ii) Virtually all candidates found 
d

d

v

t
 correctly and were able to answer this part correctly. Candidates 

all showed their method of solution. No candidate seemed over-reliant on their calculator. 
 
(iii) Similarly, virtually all candidates integrated the expression for v with respect to t and did so 

correctly to find an expression for the displacement. Some candidates omitted to calculate or state 
that c was equal to 0. A very small number of candidates would improve if they took a little more 
care with their variables. The terms in t were usually integrated with respect to t but the constant 
was, on occasion, integrated as 90x rather than 90t. 

 
(iv) Many candidates had a good understanding of the relationship between distance and 

displacement. Candidates scored well in this part, with a good proportion scoring full marks. 
 
 (a) Almost all candidates answered this part correctly. The few errors seen were giving the answer  as 

78 + c, or for calculating s when t = 1 and when t = 2 and summing the results. 
 
 (b) A good number of fully correct answers were given. Among those who were not fully correct, a 

good number were partially correct, giving an answer of 67.5 m. 
 

Answers: (ii) a = 0 ms
-2

  (iii) 
3 29 63

( ) 90
3 2

t t
s t= − +   (iv)(a) 78 m  (b) 88.5 m 
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