<u>Differentiation and integration – 2022 Nov IGCSE 0606 Additional Math</u>

1. Nov/2022/Paper_0606_11/No.8

Find $\int_0^a \left(\frac{2}{x+1} - \frac{1}{x+2}\right) dx$, where a is a positive constant. Give your answer, as a single logarithm, in terms of a. [5]

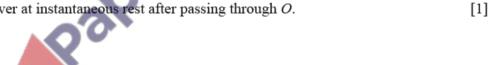
2. Nov/2022/Paper_0606_12/No.9

(a) Show that $\frac{1}{2x+1} - \frac{1}{(2x+1)^2} + \frac{4}{4x-1} = \frac{24x^2 + 14x + 4}{(2x+1)^2(4x-1)}$. [2]

abridge

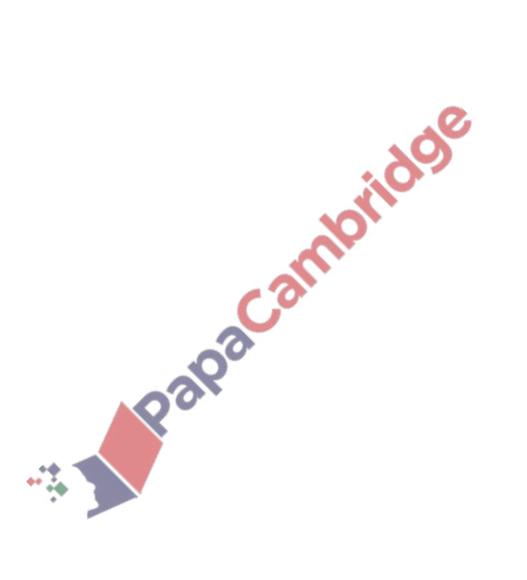
(b) Hence find $\int_{\frac{1}{2}}^{1} \frac{24x^2 + 14x + 4}{(2x+1)^2(4x-1)} dx$, giving your answer in the form $\frac{1}{2} \ln p + q$, where p and q are rational numbers. [7]

3. Nov/2022/Paper_0606_12/No.11


A particle P moves in a straight line such that, t seconds after passing through a fixed point O, its displacement, s metres, is given by $s = \frac{\left(2t+1\right)^{\frac{3}{2}}}{t+1} - 1$.

(a) Show that the velocity of P at time t can be written in the form $\frac{(2t+1)^{\frac{1}{2}}}{(t+1)^2}(a+bt)$, where a and b [5]

$$\frac{(2t+1)^{\frac{1}{2}}}{(t+1)^2}(a+bt)$$
, where a and b

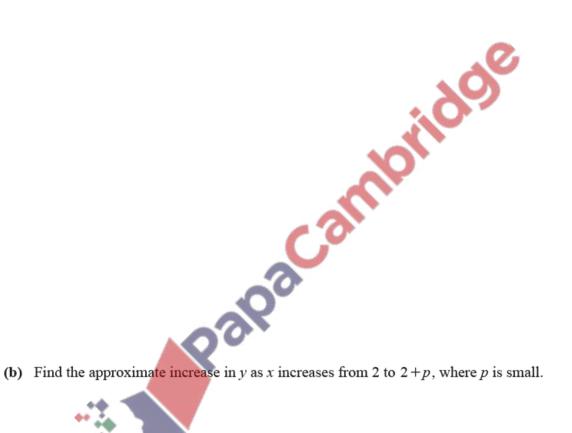

(b) Show that P is never at instantaneous rest after passing through O.

4. Nov/2022/Paper_0606_13/No.7

Find the exact value of $\int_0^{\frac{\pi}{2}} (\cos 3x + 4\sin 2x + 1) dx.$

[5]

5. Nov/2022/Paper_0606_13/No.11


It is given that $\int_{1}^{a} \left(\frac{3}{3x+2} - \frac{2}{2x+1} - \frac{1}{x} \right) dx = \ln \frac{1}{5}, \text{ where } a > 1. \text{ Find the exact value of } a.$ [6]

6. Nov/2022/Paper_0606_13/No.12

It is given that $y = \frac{(3x^2 - 2)^{\frac{2}{3}}}{x - 1}$, for x > 1.

(a) Write $\frac{dy}{dx}$ in the form $\frac{(3x^2-2)^{-\frac{1}{3}}}{(x-1)^2}(x^2+Ax+B)$, where A and B are integers. [5]

(b) Find the approximate increase in y as x increases from 2 to 2+p, where p is small. [2]

7. Nov/2022/Paper_0606_21/No.3

(a) Find the coordinates of the point on the curve $y = \sqrt{1+3x}$ where the gradient of the normal is $-\frac{8}{3}$.

(b) Find the equation of the normal to the curve $y = \sqrt{1+3x}$ at the point (8, 5) in the form y = mx + c.

8. Nov/2022/Paper_0606_21/No.5

You are given that $y = \frac{1}{\cos 2x}$.

(a) Show that $\frac{dy}{dx} = \frac{k \sin 2x}{\cos^2 2x}$ where k is a constant to be found.

[2]

(b) Find the values of x such that $\frac{dy}{dx} = \frac{5}{\sin 2x}$ for $0 < x < \frac{\pi}{2}$.

[4]

9. Nov/2022/Paper_0606_21/No.8

The equation of a curve is $y = x \sin x$.

(a) Find $\frac{dy}{dx}$. [2]

(b) Find the equation of the tangent to the curve at $x = \frac{\pi}{2}$ in the form y = mx + c.

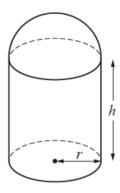
[3]

(d) Evaluate $\int_0^{\frac{\pi}{4}} x \cos x dx$, giving your answer correct to 2 significant figures.

[2]

10. Nov/2022/Paper_0606_22/No.3

In this question a and b are constants.


The normal to the curve $y = \frac{a}{x} + 3x - 2$ at the point where x = 1 has equation $y = -\frac{1}{4}x + b$. [6]

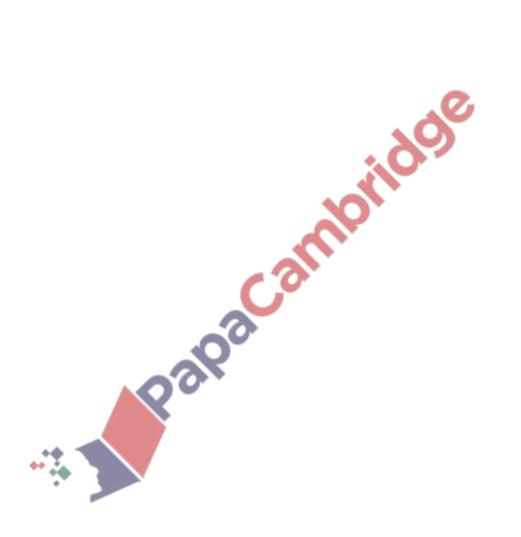
11. Nov/2022/Paper_0606_22/No.8

In this question all lengths are in centimetres.

The volume of a cylinder with radius r and height h is $\pi r^2 h$ and its curved surface area is $2\pi rh$. The volume of a sphere with radius r is $\frac{4}{3}\pi r^3$ and its surface area is $4\pi r^2$.

The diagram shows a solid object in the shape of a cylinder of base radius r and height h, with a hemisphere of radius r on top. The total surface area of the object is $300 \, \mathrm{cm}^2$.

(a) Find an expression for h in terms of r.

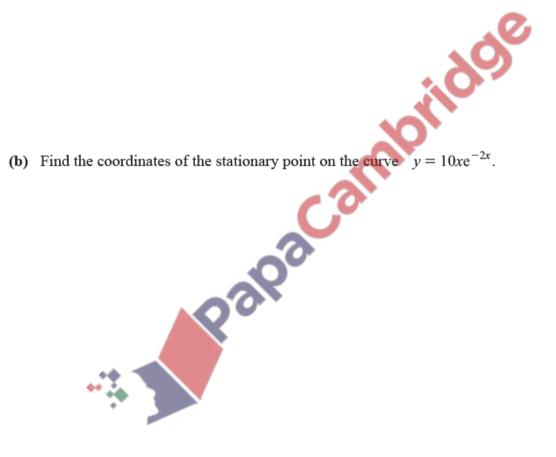

[2]

(b) Show that the volume, V, of the object is $150r - \frac{5}{6}\pi r^3$.

[3]

12. Nov/2022/Paper_0606_23/No.2

The tangent to the curve $y = ax^2 - 5x + 2$ at the point where x = 2 has equation y = 7x + b. Find the values of the constants a and b.



13. Nov/2022/Paper_0606_23/No.9

The equation of a curve is $y = kxe^{-2x}$, where k is a constant.

(a) Find $\frac{dy}{dx}$. [2]

[3]

(d) Find the exact value of $\int_0^1 4xe^{-2x}dx$.

[2]