Differentiation and integration – 2023 Additional Math 0606

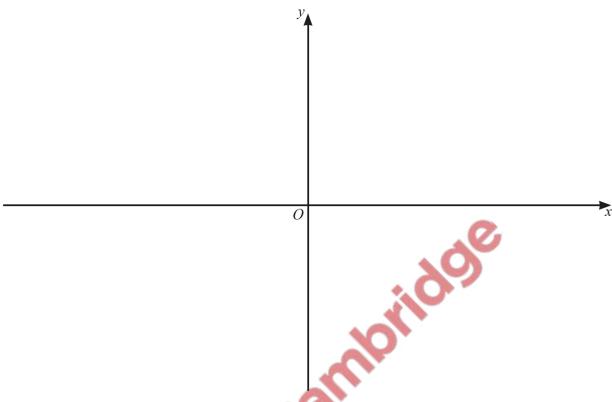
1. Nov/2023/Paper 0606/11/No.7

A curve has equation y = f(x), where $f(x) = (2x+1)(3x-2)^2$.

(a) Show that f'(x) can be written in the form 2(3x-2)(px+q), where p and q are integers. [3]

(b) Hence find the coordinates of the stationary points on the curve.

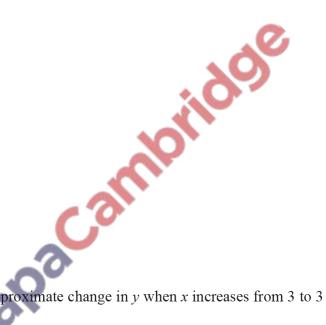
[2]



(d) Find the values of k such that the equation f(x) = k has 3 distinct solutions. [2]

2. Nov/2023/Paper_0606/11/No.10

(a) Given that $y = \frac{\sqrt{3x^2 - 2}}{x - 4}$, show that $\frac{dy}{dx}$ can be written in the form $\frac{Ax + B}{(x - 4)^2 \sqrt{3x^2 - 2}}$, where A and B are integers to be found. [5]



(b) Hence find, in terms of h, the approximate change in y when x increases from 3 to 3 + h, where h[3] is small.

3. Nov/2023/Paper_0606/12/No.12

A curve has equation $y = \frac{\sqrt{5x-2}}{x-3}$.

- (a) Explain why the curve does not exist when $x < \frac{2}{5}$. [1]
- **(b)** Show that $\frac{dy}{dx}$ can be written in the form $\frac{-(Ax+B)}{2(x-3)^2\sqrt{5x-2}}$, where A and B are positive integers. [5]

4. Nov/2023/Paper_0606/13/No.6

The polynomial q(x) is given by $q(x) = -\frac{1}{3}(2x-1)(x+3)^2$.

(a) Find the x-coordinates of the stationary points on the curve y = q(x).

[4]

(b) On the axes, sketch the graph of y = q(x) stating the intercepts with the coordinate axes. [3]

5. Nov/2023/Paper_0606/13/No.9

Given that $y = \frac{(5x+2)^{\frac{1}{3}}}{(x-1)^2}$, show that $\frac{dy}{dx}$ can be written in the form $\frac{-(Ax+B)}{3(5x+2)^{\frac{2}{3}}(x-1)^3}$, where A and B are integers.

(a) Find
$$\int \left(4x+5-\frac{1}{2x+3}\right) dx.$$

(b) Hence find the exact value of $\int_{1}^{3} \left(4x+5-\frac{1}{2x+3}\right) dx$, simplifying your answer. [3]

7. Nov/2023/Paper_0606/21/No.7

A particle moves in a straight line. At time t seconds after passing through a fixed point O, its velocity, $v \,\mathrm{ms}^{-1}$, is given by $v = 10 \sin 2t - 6 \cos 2t$.

(a) Find an expression for the acceleration of the particle. [2]

(b) Find the acceleration when $t = \frac{\pi}{4}$. [1]

(c) Find the first time at which the acceleration is zero. [3]

ticle between t (d) Find the displacement of the particle between $t = \frac{\pi}{4}$ and $t = \frac{\pi}{2}$. [4]

- **8.** Nov/2023/Paper_0606/22/No.5
 - (a) Find the equation of the normal to the curve $y = x^3 7x^2 + 12x 5$ at the point (1, 1). [5]

(b) Find the x-coordinates of the two points where the normal cuts the curve again. Give your answers in the form $x = a \pm \sqrt{b}$ where a and b are integers. [5]

9. Nov/2023/Paper_0606/22/No.6

Find the exact value of $\int_{2}^{3} \frac{(x+2)^{2}}{x} dx.$ [6]

10. Nov/2023/Paper_0606/22/No.7

A particle is travelling in a straight line. Its displacement, s metres, from the origin at time t seconds is given by $s = 1.5e^{2t} + 2e^{-2t} - t$.

(a) Find expressions for the velocity, $v \,\text{ms}^{-1}$, and acceleration, $a \,\text{ms}^{-2}$, of the particle. [3]

Papacambildoe **(b)** Find the time, T seconds, when the particle is at rest.

[4]



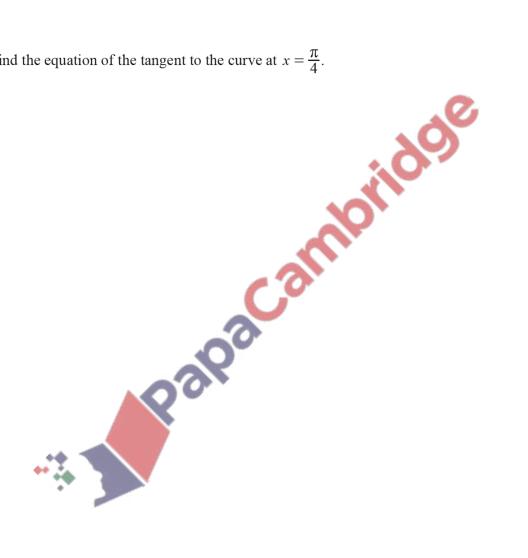
[2]

11. Nov/2023/Paper_0606/22/No.8

A curve has equation $y = x \sin 2x$.

(a) Find $\frac{dy}{dx}$. [2]

(b) Find the equation of the tangent to the curve at $x = \frac{\pi}{4}$. [3]



Find the exact value of
$$\int_3^5 \frac{(x-1)^2}{x^3} dx.$$
 [6]

13. Nov/2023/Paper_0606/23/No.5

The curved surface area of a cylinder with radius r and height h is $2\pi rh$.

A closed cylinder has radius r cm and volume 1000 cm^3 .

(a) Show that the total surface area of the cylinder is
$$2\pi r^2 + \frac{2000}{r}$$
 cm². [3]

(b) Find the value of r which makes this area a minimum. You should show that your value of r gives a minimum for this area.

14. Nov/2023/Paper_0606/23/No.6

A particle travels in a straight line. Its displacement, s metres, from the origin, at time t seconds, where t > 2, is given by $s = \ln(4t^2 - 5) - t$.

(a) Find expressions for the velocity, $v \,\text{ms}^{-1}$, and acceleration, $a \,\text{ms}^{-2}$, of the particle. [4]

Papa Cambridge

Rapa Cambridge **(b)** Find the time when the particle is at rest.

[3]

(c) Find the acceleration at this time.

[2]

15. Nov/2023/Paper_0606/23/No.9

A curve has equation $y = xe^{2x}$.

(a) Find $\frac{dy}{dx}$. [2]

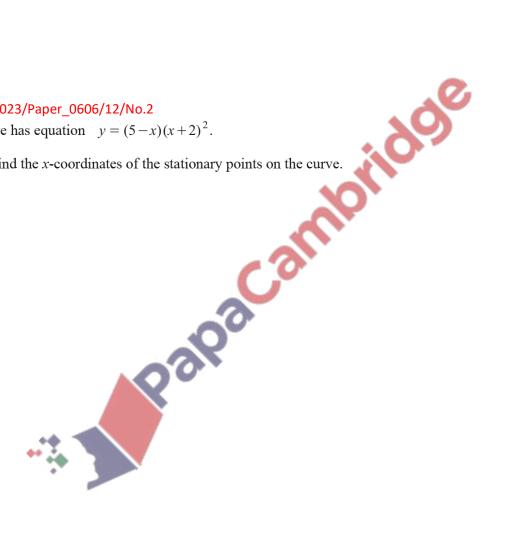
Palpacambridge **(b)** Find the equation of the normal to the curve at x = 1. [4]

16. March/2023/Paper_0606/12/No.2

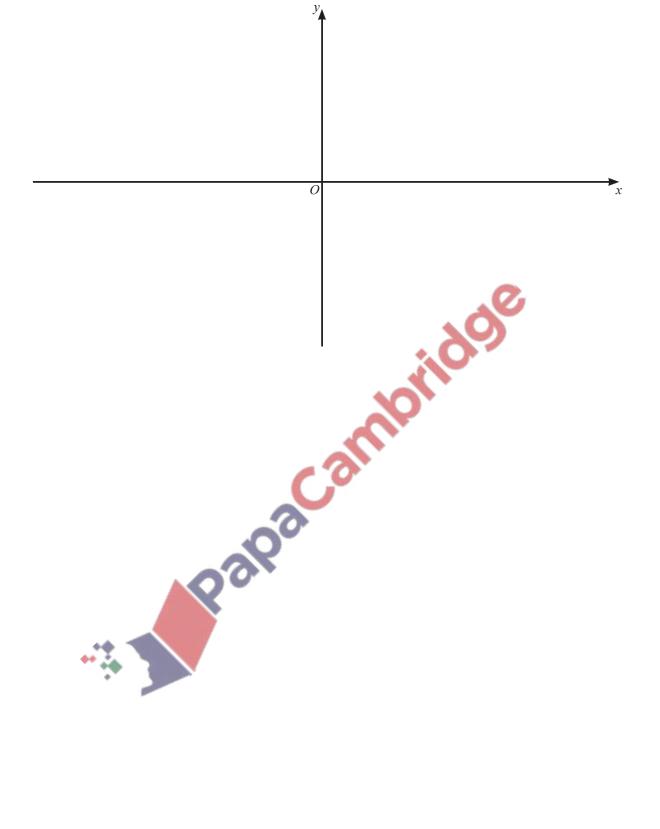
A curve has equation $y = (5-x)(x+2)^2$.

(a) Find the x-coordinates of the stationary points on the curve.

[4]



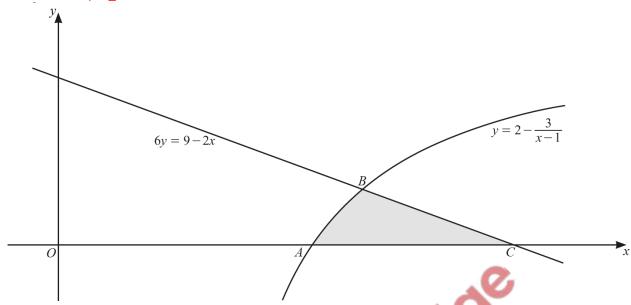
(b) On the axes below, sketch the graph of $y = (5-x)(x+2)^2$, stating the coordinates of the points where the curve meets the axes. [3]



17. March/2023/Paper_0606/12/No.6

Given that $f''(x) = (5x+2)^{-\frac{2}{5}}$, $f'(6) = \frac{17}{3}$ and $f(6) = \frac{26}{3}$, find an expression for f(x). [8]

18. March/2023/Paper_0606/12/No.8

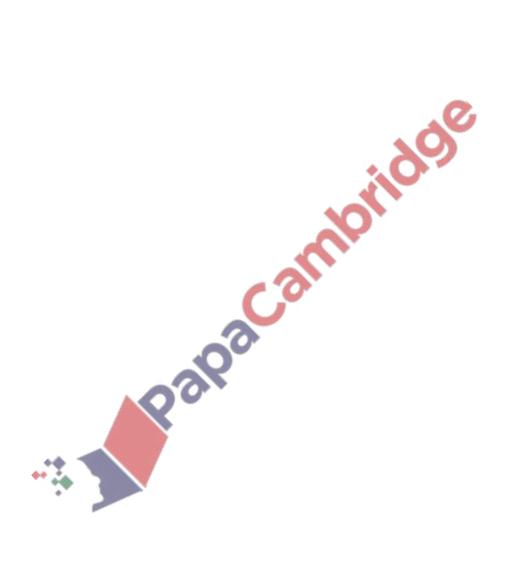


The diagram shows part of the curve $y=2-\frac{3}{x-1}$ and the straight line 6y=9-2x. The curve intersects the x-axis at point A and the line at point B. The line intersects the x-axis at point C. Find the area of the shaded region ABC, giving your answer in the form $p+\ln q$, where p and q are rational numbers.

19. March/2023/Paper_0606/22/No.4

$$y = \frac{\sec^2 5x - \tan^2 5x}{\csc 5x}$$

Show that $y = a \sin bx$, where a and b are integers, and hence find the value of $\int_0^{\frac{\pi}{5}} y \, dx$. [4]



20. March/2023/Paper_0606/22/No.7

(a) Variables x and y are such that $y = \frac{1 + \cos^2 x}{\tan x}$. Use differentiation to find the approximate change in y as x increases from $\frac{\pi}{4}$ to $\frac{\pi}{4} + h$, where h is small. [5]

(b) Given that $y = \frac{1}{(x-3)^3}$ show that $y - \frac{dy}{dx} - \frac{1}{3} \left(\frac{d^2y}{dx^2} \right)$ can be written as $\frac{(x+1)(x-4)}{(x-3)^5}$. [4]

21. March/2023/Paper_0606/22/No.10

A particle P moves in a straight line such that, t seconds after passing a fixed point O, its acceleration, $a \,\mathrm{ms}^{-2}$, is given by

$$a = 6t$$
 for $0 \le t \le 3$,
 $a = \frac{18e^3}{e^t}$ for $t \ge 3$.

When t = 1, the velocity of P is $2 \,\mathrm{ms}^{-1}$ and its displacement from O is $-4 \,\mathrm{m}$.

(a) (i) Find the velocity of
$$P$$
 when $t = 3$. [3]

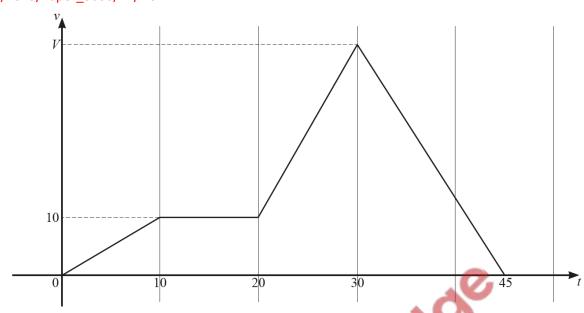
[3]

(ii) Find the displacement of P from O when t = 3.

22. March/2023/Paper_0606/22/No.11

The normal to the curve $y = \sin(4x - \pi)$ at the point A(a, 0), where $\frac{\pi}{2} < a < \pi$, meets the y-axis at the point B. Find the exact area of triangle OAB, where O is the origin. [9]

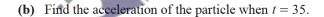
23. June/2023/Paper_0606/11/No.4



The diagram shows the velocity-time graph for a particle travelling in a straight line with velocity, of the calling $v \,\mathrm{ms}^{-1}$, at time t seconds. When t = 30 the velocity of the particle is $V \,\mathrm{ms}^{-1}$. The particle travels 800 metres in 45 seconds.

(a) Find the value of V. [2]

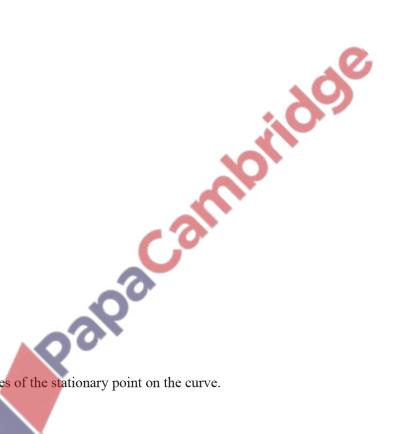
[2]



24. June/2023/Paper_0606/11/No.8

A curve has the equation $y = \frac{(3x-4)^{\frac{1}{3}}}{2x+1}$.

(a) Show that
$$\frac{dy}{dx} = \frac{Ax + B}{(2x+1)^2(3x-4)^{\frac{2}{3}}}$$
, where A and B are integers to be found. [5]

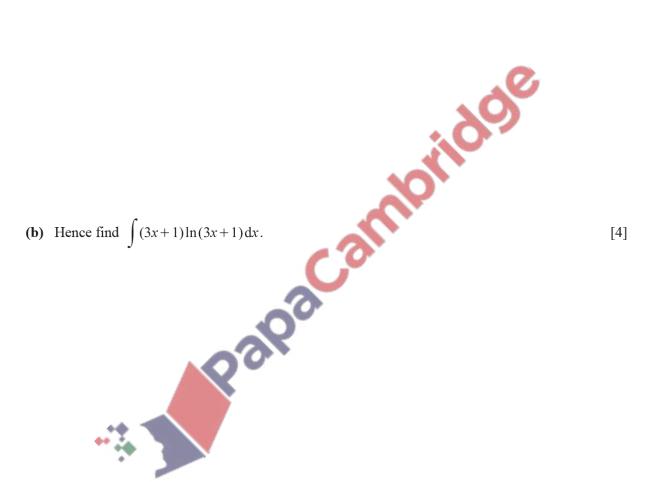


(b) Find the coordinates of the stationary point on the curve.

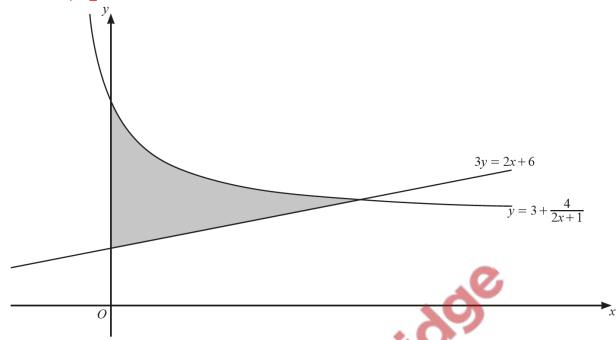
25. June/2023/Paper_0606/11/No.10

It is given that $y = (3x+1)^2 \ln(3x+1)$.

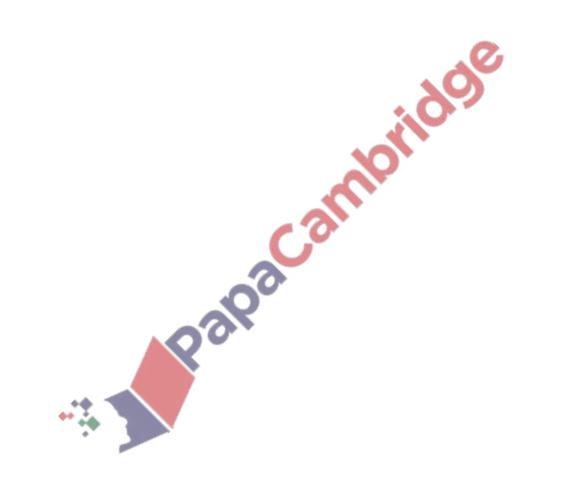
(a) Find
$$\frac{dy}{dx}$$
. [3]



26. June/2023/Paper_0606/12/No.9



The diagram shows part of the curve $y = 3 + \frac{4}{2x+1}$ and the straight line 3y = 2x+6. Find the area of the shaded region, giving your answer in exact form. [10]



27. June/2023/Paper_0606/13/No.9

In this question lengths are in centimetres and time is in seconds.

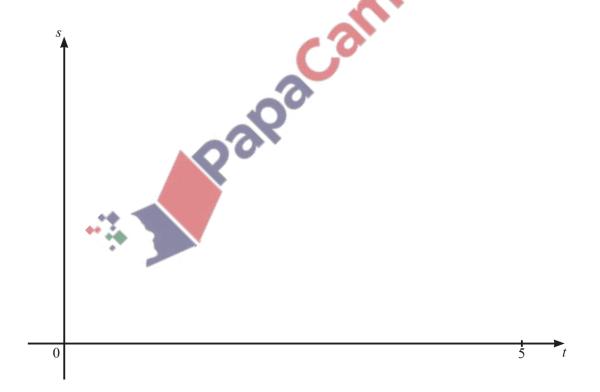
A particle *P* moves in a straight line such that its displacement *s*, from a fixed point at a time *t*, is given by $s = 3(t+2)(t-4)^2$ for $0 \le t \le 5$.

(a) Find the values of t for which the velocity, v, of P is zero.

[4]

(b) On the axes below, sketch the displacement-time graph of P, stating the intercepts with the axes.

31



(d) (i) Find an expression for the acceleration of P at time t.

[1]

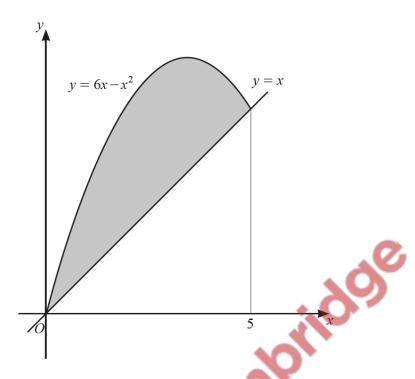
(ii) Hence, on the axes below, sketch the acceleration—time graph of *P*, stating the intercepts with the axes. [2]



The volume, V, of a sphere of radius r is given by $V = \frac{4}{3}\pi r^3$.

The volume of a sphere is increasing at a constant rate of 24 cm³ s⁻¹. Find the rate of increase of the radius when the radius is 6 cm. [4]

(a)



The diagram shows the curve $y = 6x - x^2$ for $0 \le x \le 5$ and the line y = x. Find the area of the shaded region. [4]

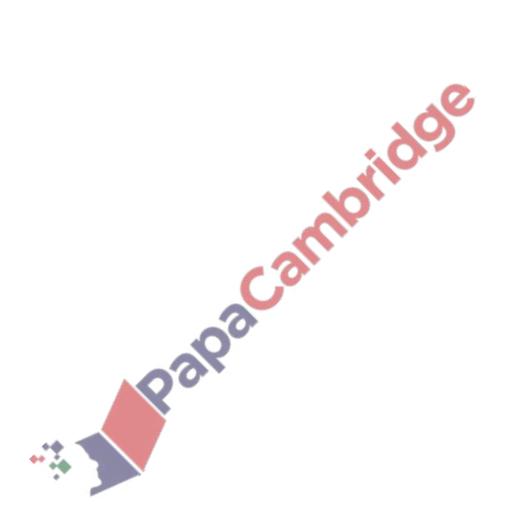
(b) (i) Find
$$\int \left(\frac{1}{(2x-6)^3} + \cos x\right) dx$$
.

[3]

(ii) Find
$$\int \frac{(x^4+1)^2}{2x} dx$$
.

[3]

The line with equation x+3y=k, where k is a positive constant, is a tangent to the curve with equation $x^2+y^2+2y-9=0$. Find the value of k and hence find the coordinates of the point where the line touches the curve.



A curve has equation $y = 32x^2 + \frac{1}{8x^2}$ where $x \neq 0$.

(a) Find the coordinates of the stationary points of the curve.

[5]

(b) These stationary points have the same nature. Use the second derivative test to determine whether they are maximum points or minimum points. [3]

Variables x and y are related by the equation $y = 2 + \tan(1 - x)$ where $0 \le x \le \frac{\pi}{2}$. Given that x is increasing at a constant rate of 0.04 radians per second, find the corresponding rate of change of y when y = 3.

(a)
$$f(x) = \sqrt{3 + (4x - 2)^5}$$
 where $x > 1$.

Find an expression for f'(x), giving your answer as a simplified algebraic fraction.

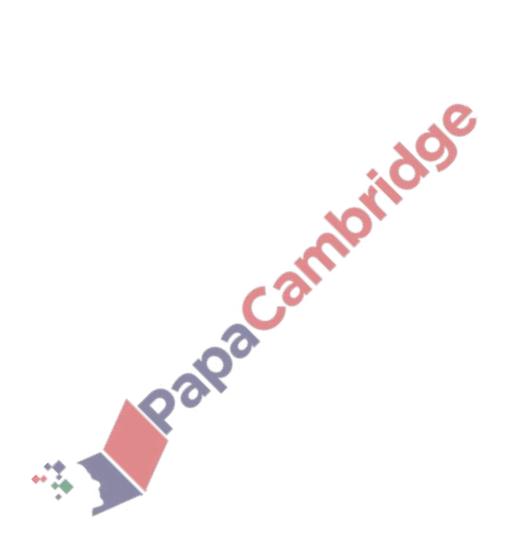
[3]

 $y = \frac{5x}{3x+2}$. Using differentiation, find the **(b)** Variables x and y are related by the equation approximate change in x when y increases from 10 by the small amount 0.01. [4]

(c) (i) Differentiate $y = x^3 \ln x$ with respect to x.

(ii) Hence find $\int \left(\frac{x^2}{6}(2+3\ln x)\right) dx$. [3]

A curve has equation $y = \cos \frac{x}{4}$ where x is in radians. The normal to the curve at the point where $x = \frac{4\pi}{3}$ cuts the x-axis at the point P. Find the exact coordinates of P. [7]



A particle travels in a straight line so that, t seconds after passing a fixed point, its velocity, vms⁻¹, is given by

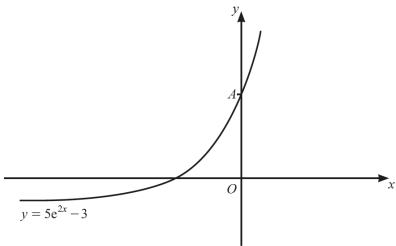
$$v = e^{\frac{t}{4}} \qquad \text{for } 0 \le t \le 4,$$

$$v = \frac{16e}{t^2} \quad \text{for } 4 \le t \le k.$$

The total distance travelled by the particle between t = 0 and t = k is 13.4 metres. Find the value of k.

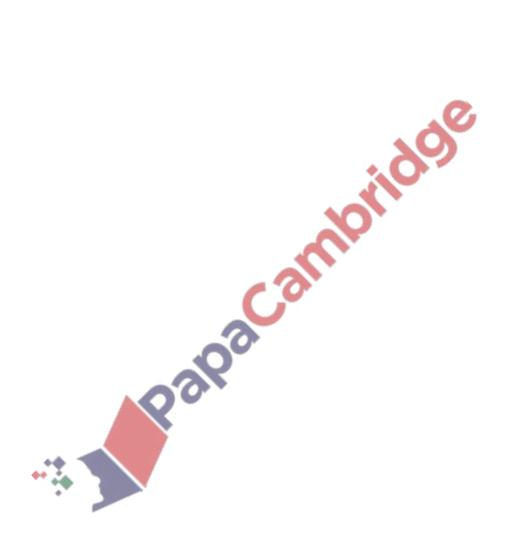
(a) Differentiate $\ln(x^3 + 3x^2)$ with respect to x, simplifying your answer. [2]

(b) Hence find $\int \frac{x+2}{x(x+3)} dx$. [2]

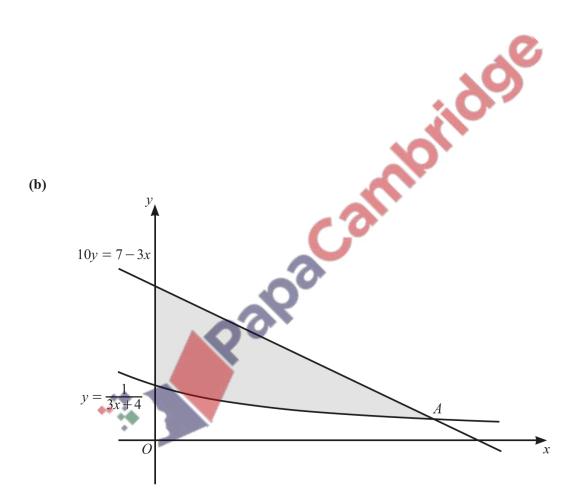


The diagram shows the curve $y = 5e^{2x} - 3$. The curve meets the y-axis at the point A. The tangent to the curve at A meets the x-axis at the point B. Find the length of AB. [6]

Variables x and y are such that $y = \frac{4x^3 + 2\sin 8x}{1 - x}$. Use differentiation to find the approximate change in y as x increases from 0.1 to 0.1 + h, where h is small. [6]



(a) Show that
$$\int_{1}^{8} \frac{x+4}{\sqrt[3]{x}} dx = 36.6$$
. [3]



The diagram shows part of the line 10y = 7 - 3x and part of the curve $y = \frac{1}{3x + 4}$.

The line and curve intersect at the point A. Verify that the y-coordinate of A is 0.1 and calculate the area of the shaded region. [8]