<u>Trigonometry – 2023 Additional Math 0606</u>

1. Nov/2023/Paper_0606/11/No.1

The diagram shows part of the graph of $y = a\cos\left(\frac{x}{b}\right) + c$, where a, b and c are integers. Find the values of a, b and c.

2. Nov/2023/Paper_0606/12/No.2

The function g is defined by $g(x) = 5\sin\frac{3x}{4} - 2$ for all values of x.

(a) Write down the amplitude of g. [1]

(b) Write down the period of g in degrees. [1]

(c) On the axes, sketch the graph of y = g(x), for $-180^{\circ} \le x \le 180^{\circ}$. [3]

3. Nov/2023/Paper_0606/12/No.5

Solve the equation $3 \sec^2 \left(2\theta + \frac{\pi}{6} \right) = 4$ for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, giving your answers in terms of π . [5]

4. Nov/2023/Paper_0606/13/No.3

On the axes, draw the graph of $y = 2\sin\frac{x}{3} - 1$ for $-360^{\circ} \le x \le 360^{\circ}$.

[4]

5. Nov/2023/Paper_0606/13/No.12

Solve the equation $3\csc^2\left(\frac{2x}{3} - \frac{\pi}{3}\right) = 4$, for $0 < x \le 3\pi$. Give your answers in terms of π . [5]

6. Nov/2023/Paper_0606/21/No.11

(a) Show that
$$\frac{1}{\sec x - \csc x} + \frac{1}{\sec x + \csc x} = \frac{2\cos x}{1 - \cot^2 x}.$$

[5]

(b) Solve the equation $3\tan^2(y + \frac{\pi}{4}) = 1$ for $-2\pi < y < 0$.

[4]

7. Nov/2023/Paper_0606/22/No.10

(a) By writing $\cot x$ and $\tan x$ in terms of $\cos x$ and $\sin x$, show that

$$\frac{\sin x}{1 - \cot x} + \frac{\cos x}{1 - \tan x} = \sin x + \cos x.$$
 [5]

8. Nov/2023/Paper_0606/23/No.7

DO NOT USE A CALCULATOR IN THIS QUESTION.

You may use the following trigonometrical ratios.

$$\sin 60^\circ = \frac{\sqrt{3}}{2}, \sin 45^\circ = \frac{\sqrt{2}}{2}$$

$$\cos 60^{\circ} = \frac{1}{2}, \quad \cos 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$\tan 60^\circ = \sqrt{3}, \ \tan 45^\circ = 1$$

(a) Given that the area of triangle
$$ABC$$
 is $\frac{3+\sqrt{3}}{4}$, show that $\sin 75^\circ = \frac{\sqrt{6}+\sqrt{2}}{4}$. [5]

[2]

9. Nov/2023/Paper_0606/23/No.8

(a) Show that
$$\frac{\sin x}{\tan x - 1} - \frac{\cos x}{\tan x + 1} = \frac{\cos x}{\sin^2 x - \cos^2 x}.$$

[5]

(b) Hence solve the equation $\frac{\sin x}{\tan x - 1} - \frac{\cos x}{\tan x + 1} = 1$ for $0^{\circ} < x < 360^{\circ}$.

[5]

(a) It is given that $2 + \cos \theta = x$ for 1 < x < 3 and $2 \csc \theta = y$ for y > 2. Find y in terms of x.

(b) Solve the equation $3\cos\frac{\phi}{2} = \sqrt{3}\sin\frac{\phi}{2}$ for $-4\pi < \phi < 4\pi$.

11. June/2023/Paper_0606/11/No.5

DO NOT USE A CALCULATOR IN THIS QUESTION.

In this question, all lengths are in centimetres.

(a) You are given that $\cos 120^{\circ} = -\frac{1}{2}$, $\sin 120^{\circ} = \frac{\sqrt{3}}{2}$ and $\tan 120^{\circ} = -\sqrt{3}$.

In the triangle ABC, $AB = 5\sqrt{3} - 6$, $BC = 5\sqrt{3} + 6$ and angle $ABC = 120^{\circ}$. Find AC, giving your answer in the form $a\sqrt{b}$ where a and b are integers greater than 1. [4]

(b) You are given that $\cos 30^\circ = \frac{\sqrt{3}}{2}$, $\sin 30^\circ = \frac{1}{2}$ and $\tan 30^\circ = \frac{1}{\sqrt{3}}$.

In the triangle PQR, $PQ = 3 + 2\sqrt{5}$ and angle $PQR = 30^{\circ}$. Given that the area of this triangle is $\frac{2 + 5\sqrt{5}}{4}$, find QR, giving your answer in the form $c + d\sqrt{5}$, where c and d are integers. [4]

(a) Show that
$$\frac{\cot \theta + \tan \theta}{\sec \theta} = \csc \theta$$
.

[4]

(b) Hence solve the equation $\left(\frac{\cot\frac{\phi}{3} + \tan\frac{\phi}{3}}{\sec\frac{\phi}{3}}\right)^2 = 2, \text{ for } -540^\circ < \phi < 540^\circ.$ [6]

13. June/2023/Paper_0606/12/No.1

The diagram shows the graph of $y = a \cos bx + c$. Find the values of the constants a, b and c.

[3]

(a) Given that $\cot^2 \theta = \frac{1}{y+2}$ and $\sec \theta = x-4$, find y in terms of x. [2]

(b) Solve the equation $\sqrt{3}\csc\left(2\phi + \frac{3\pi}{4}\right) = 2$, for $-\pi < \phi < \pi$, giving your answers in terms of π . [5]

(a) Write down the period, in radians, of $3 \tan \frac{\theta}{2} - 3$.

[1]

(b) On the axes, sketch the graph of $y = 3 \tan \frac{\theta}{2} - 3$ for $-\pi \le \theta \le \pi$, stating the coordinates of the points where the graph meets the axes. [3]

(a) Show that
$$\cos^4 \theta - \sin^4 \theta + 1 = 2\cos^2 \theta$$
. [3]

(b) Solve the equation $\cos^4\frac{\phi}{3} - \sin^4\frac{\phi}{3} + 1 = \frac{1}{2}$, for $-3\pi < \phi < 3\pi$, giving your answers in terms of π . [5]

17. June/2023/Paper_0606/21/No.2

The function g is defined for $0^{\circ} \le x \le 120^{\circ}$ by $g(x) = 2 + 4\cos 6x$.

(a) On the axes, sketch the graph of y = g(x).

[3]

(b) State the amplitude of g.

[1]

(c) State the period of g.

[1]