Vectors in two dimensions – 2023 Additional Math 0606

1. Nov/2023/Paper_0606/11/No.3

The point A has position vector $\begin{pmatrix} 2 \\ -6 \end{pmatrix}$. The point B has position vector $\begin{pmatrix} -3 \\ 6 \end{pmatrix}$.

(a) Find, in vector form, the displacement of B from A.

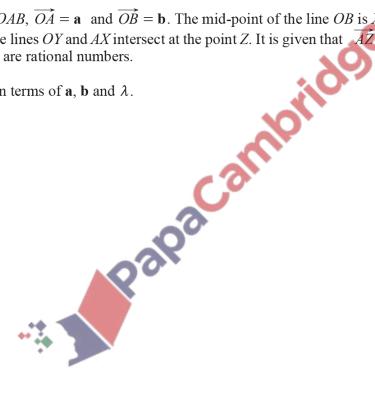
(b) Find the distance AB.

[1]

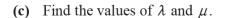
[2]

Papa Cambridge The point X is such that $3\overrightarrow{AB} = 2\overrightarrow{AX}$.

[2]

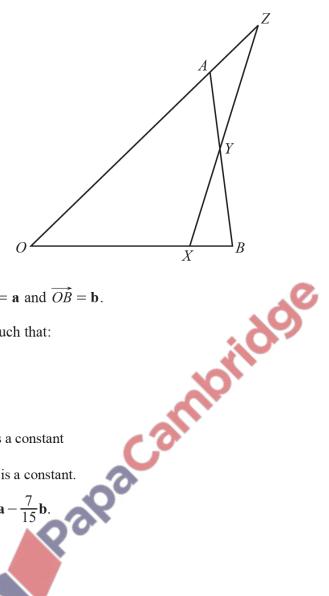

2. Nov/2023/Paper_0606/12/No.11

In the triangle \overrightarrow{OAB} , $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The mid-point of the line \overrightarrow{OB} is X, and the mid-point of the line AB is Y. The lines OY and AX intersect at the point Z. It is given that $\overrightarrow{AZ} = \lambda \overrightarrow{AX}$ and $\overrightarrow{OZ} = \mu \overrightarrow{OY}$ where λ and μ are rational numbers.


(a) Find \overrightarrow{OZ} in terms of a, b and λ .

[3]

(b) Find \overrightarrow{OZ} in terms of **a**, **b** and μ .


[2]

[3]

(d) Hence find \overrightarrow{OZ} in terms of **a** and **b** only.

[1]

In the triangle \overrightarrow{OAB} , $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

The straight line XYZ is such that:

•
$$\overrightarrow{OX} = \frac{4}{5}\mathbf{b}$$

•
$$\overrightarrow{AY} = \frac{1}{3}\overrightarrow{AB}$$

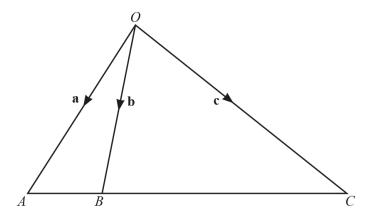
- $\overrightarrow{AZ} = \mu \mathbf{a}$, where μ is a constant
- $\overrightarrow{YZ} = \lambda \overrightarrow{XY}$, where λ is a constant.
- (a) Show that $\overrightarrow{XY} = \frac{2}{3}\mathbf{a} \frac{7}{15}\mathbf{b}$.

(b) Find \overrightarrow{YZ} in terms of λ , **a** and **b**.

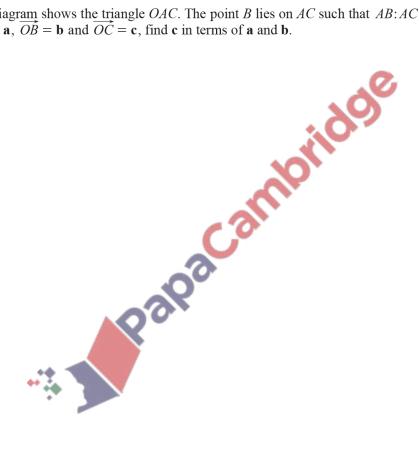
[1]

(c) Find \overrightarrow{YZ} in terms of μ , **a** and **b**.

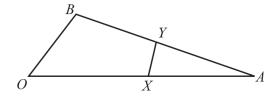
[2]


(d) Hence find the values of λ and μ ,

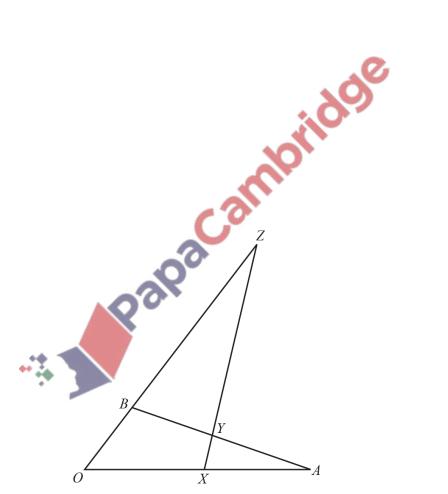
[3]

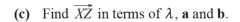

4. March/2023/Paper_0606/12/No.9

In this question, all lengths are in metres.


- (a) A particle P has position vector $\begin{pmatrix} 2+12t \\ 5-5t \end{pmatrix}$ at a time t seconds, $t \ge 0$.
 - (i) Write down the initial position vector of P. [1]
 - (ii) Find the speed of P. [2]
 - (iii) Determine whether P passes through the point with position vector $\begin{pmatrix} 158 \\ -48 \end{pmatrix}$. [2]

The diagram shows the triangle OAC. The point B lies on AC such that AB:AC = 1:4. Given that $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$, find \mathbf{c} in terms of \mathbf{a} and \mathbf{b} . [3]


5. June/2023/Paper_0606/13/No.8

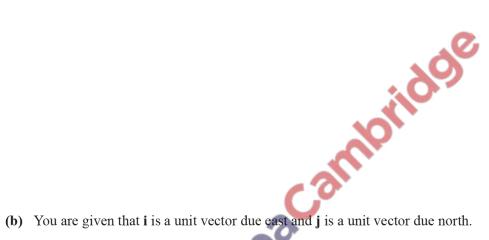

The diagram shows the triangle \overrightarrow{OAB} with $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point X lies on the line OA such that $\overrightarrow{OX} = \frac{3}{5}\mathbf{a}$. The point Y is the mid-point of the line AB. Find, in terms of \mathbf{a} and \mathbf{b} ,

(a)
$$\overrightarrow{AB}$$

(b)
$$\overrightarrow{XY}$$
.

The lines OB and XY are extended to meet at the point Z. It is given that $\overrightarrow{YZ} = \lambda \overrightarrow{XY}$ and $\overrightarrow{BZ} = \mu \mathbf{b}$.

(d) Find \overrightarrow{XZ} in terms of μ , **a** and **b**.

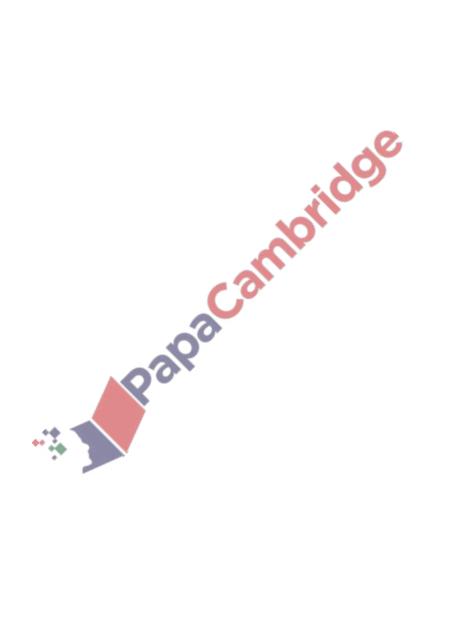

[2]

(e) Hence find the values of λ and μ .

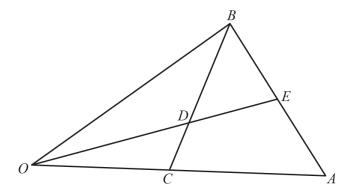
[3]

6. June/2023/Paper_0606/21/No.6

(a) The position vectors of the points P, Q and R relative to an origin O are $\begin{pmatrix} 4 \\ 7 \end{pmatrix}$, $\begin{pmatrix} 8 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} x \\ y \end{pmatrix}$ respectively. The point R lies on PQ extended such that $3\overrightarrow{QR} = 2\overrightarrow{PR}$. Use a vector method to find the values of x and y.



(b) You are given that i is a unit vector due east and j is a unit vector due north.


Three vectors, \mathbf{a} , \mathbf{b} and \mathbf{c} are in the same horizontal plane as \mathbf{i} and \mathbf{j} and are such that $\mathbf{a} + \mathbf{b} = \mathbf{c}$. The magnitude and bearing of a are 5 and 210°. The magnitude and bearing of c are 10 and 330°.

Find \mathbf{a} and \mathbf{c} in terms of \mathbf{i} and \mathbf{j} .

[2]

7. June/2023/Paper_0606/22/No.10

The diagram shows a triangle OAB. The point C is the mid-point of OA. The point D lies on CB such that CD:DB=2:3.

$$\overrightarrow{OC} = \mathbf{c}$$
 $\overrightarrow{CB} = \mathbf{b}$

The point E lies on AB such that $\overrightarrow{OE} = \lambda \overrightarrow{OD}$ and $\overrightarrow{AE} = \mu \overrightarrow{AB}$ where λ and μ are scalars. Find two expressions for \overrightarrow{OE} , each in terms of \mathbf{b} , \mathbf{c} and a scalar, and hence find AE: EB. [8]

