ZNOTES.ORG

UPDATED TO 2020-22 SYLLABUS
CAIE IGCSE
ADD MATHS (0606)

SUMMARIZED NOTES ON THE THEORY SYLLABUS

1. Functions

- One-to-one functions: each x value maps to one distinct y value (check using vertical line test)
e.g.

$$
f(x)=3 x-1
$$

- Many-to-one functions: there are some $f(x)$ values which are generated by more than one x value
e.g.

$$
f(x)=x^{2}-2 x+3
$$

Domain $=x$ values Range $=y$ values

- Notation: $f(x)$ can also be written as $f: x \mapsto$
- To find range:
- Complete the square
$x^{2}-2 x+3 \rightarrow(x-1)^{2}+2$
- Work out min/max point

Minimum point $=(1,2)$
\therefore all y values are greater than or equal to 2 . $f(x) \geq 2$ One-to-many functions do not exist

- Domain of $g(x)=$ Range of $g^{-1}(x)$
- Solving functions:
- $f(2)$: substitute $x=2$ and solve for $f(x)$
- $\mathrm{fg}(x)$: Substitute $x=g(x)$
- $f^{-1}(x)$: let $y=f(x)$ and make x the subject
- Composite Functions:
- $f(g(x))$ or $f \cdot g(x)$
- Substitute all instances of x in $\mathrm{f}(\mathrm{x})$ with $\mathrm{g}(\mathrm{x})$
- Simplify
- If it is $f^{2}(x)$, or $f(f(x))$, then for every x in $\mathrm{f}(\mathrm{x})$ substitute $\mathrm{f}(\mathrm{x}$)'s contents
- Inverse Functions
- Only 1 to 1 functions have inverses
- If $f(x)$ is a function, equate $f(x)$ to y
- Replace all occurrences of x in $f(x)$ with y
- Try to make x the subject of the function again
- That is the $f^{-1}(x)$
- Transformation of graphs:
- $f(-x)$: reflection in the y-axis
- $-f(x)$: reflection in the x-axis
- $f(x)+a$: translation of a units parallel to y-axis
- $f(x+a)$: translation of $-a$ units parallel to x-axis

2. Quadratic Functions

- To sketch $y=a x^{2}+\mathrm{bx}+c ; a \neq 0$
- Determine the shape
- $a>0$-u-shaped \therefore minimum point
- $a<0$-n-shaped \therefore maximum point
- Use the turning point

Express $y=a x^{2}+\mathrm{bx}+c$ as $y=a(x-h)^{2}+k$
by completing the square

$$
\begin{gathered}
x^{2}+n x \Longleftrightarrow\left(x+\frac{n}{2}\right)^{2}-\left(\frac{n}{2}\right)^{2} \\
a(x+n)^{2}+k
\end{gathered}
$$

Where the vertex is $(-n, k)$

- Find the y-intercept:
- Substitute x as 0 to get y intercept
- Find the x-intercept:
- Factorize or use formula
- Type of root by calculating discriminant $b^{2}-4 a c$
- If $b^{2}-4 a c=0$, real and equal roots
- If $b^{2}-4 a c>0$, real and distinct roots
- If $b^{2}-4 a c<0$, no real roots
- Intersections of a line and a curve: if the equations of the line and curve leads to a quadratic equation then:
- If $b^{2}-4 a c=0$, line is tangent to the curve
- If $b^{2}-4 a c>0$, line meets curve in two points
- If $b^{2}-4 a c<0$, line does not meet curve
- Quadratic inequality:
- $(x-d)(x-\beta)<0 \Longrightarrow d<x<\beta$
- $(x-d)(x-\beta)>0 \Longrightarrow x<d$ or $x>\beta$

3. Equations, inequalities and graphs

- Transformation of graphs:
- $f(-x)$: reflection in the y-axis
- $-f(x)$: reflection in the x-axis
- $f(x)+a$: translation of a units parallel to y-axis
- $f(x+a)$: translation of $-a$ units parallel to x-axis
- $f(a x)$: stretch, scale factor $\frac{1}{a}$ parallel to x-axis
- af (x) : stretch, scale factor a parallel to y-axis
- Modulus function:
- Denoted by $|f(x)|$
- Modulus of a number is its absolute value
- Never goes below x-axis
- Makes negative graph into positive by reflecting negative part into x-axis
- Solving modulus function:
- Sketch graphs and find points of intersection
- Square the equation and solve quadratic
- Relationship of a function and its inverse:
- The graph of the inverse of a function is the reflection of a graph of the function in $y=x$

4. Indices \& Surds

4.1. Indices

- Definitions:
- for $a>0$ and positive integers p and q

$$
\begin{array}{cl}
a^{0}=1 & a^{-p}=\frac{1}{a^{p}} \\
a^{\frac{1}{p}}=\sqrt[p]{a} & a^{\frac{p}{q}}=(\sqrt[q]{a})^{p}
\end{array}
$$

- Rules:
- for $a>0, b>0$ and rational numbers m and n

$$
\begin{array}{rlrl}
a^{m} \times a^{n} & =a^{m+n} & a^{n} \times b^{n}=(\mathrm{ab})^{n} \\
\frac{a^{m}}{a^{n}} & =a^{m-n} & & \frac{a^{n}}{b^{n}}=\left(\frac{a}{b}\right)^{n}
\end{array}
$$

$$
\left(a^{m}\right)^{n}=a^{\mathrm{mn}}
$$

4.2. Surds

Definition

An irrational root is a surd, not all roots are surds

Rationalizing the Denominator

When the denominator is a surd, we can simplify by multiplying both the numerator and the denominator by the rationalization factor to rationalize
$\frac{5}{3-\sqrt{2}}=\frac{5(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}=\frac{15+5 \sqrt{2}}{9+3 \sqrt{2}-3 \sqrt{2}-2}=\frac{15+5 \sqrt{2}}{7}$

5. Factors of Polynomials

- To find unknowns in a given identity
- Substitute suitable values of x OR
- Equalize the given coefficients of like powers of x

Factor Theorem:

- If $(x-t)$ is a factor of the function $p(x)$ then $p(t)=0$

Remainder Theorem:

- If a function $f(x)$ is divided by $(x-t)$ then:

$$
\text { Remainder }=f(t)
$$

- The formula for remainder theorem:

Dividend $=$ Divisor \times Quotient + Remainder

6. Simultaneous Equations

- Simultaneous linear equations can be solved either by substitution or elimination
- Simultaneous linear and non-linear equations are generally solved by substitution as follows:
- Step 1: obtain an equation in one unknown \& solve it
- Step 2: substitute the results from step 1 into the linear equation to find the other unknown
- The points of intersection of two graphs are given by the solution of their simultaneous equations

7. Logarithmic \& Exponential Functions

- Definition
- for $a>0$ and $a \neq 1$

$$
y=a^{x} \Leftrightarrow x=\log _{a} y
$$

- For $\log _{a} y$ to be defined
$y>0$ and $a>0, a \neq 1$
- When the logarithms are defined
$\log _{a} 1=0$
$\log _{a} b+\log _{a} c \equiv \log$
$\log _{a} a=1$
$\log _{a} b-\log _{a} c \equiv \log$
$\log _{a} b \equiv \frac{\log b}{\log a}$

$$
\log _{a} b^{n} \equiv n \log
$$

- When solving logarithmic equations, check solution with original equation and discard any solutions that causes logarithm to be undefined
- Solution of $a^{x}=b$ where $a \neq-1,0,1$
- If b can be easily written as a^{n}, then

$$
a^{x}=a^{n} \Rightarrow x=n
$$

- Otherwise take logarithms on both sides, i.e.

$$
\log a^{x}=\log b \text { and so } x=\frac{\log b}{\log a}
$$

- $\log \Rightarrow \log _{10}$
- $\ln \Rightarrow \log _{e}$
- Change of base rule:

$$
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{a}(x)}
$$

Logarithmic \& Exponential Graphs

8. Straight Line Graphs

- Equation of a straight line:

$$
\begin{gathered}
y=m x+c \\
y-y_{1}=m\left(x-x_{1}\right)
\end{gathered}
$$

- Gradient:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- Length of a line segment:

$$
\text { Length }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

- Midpoint of a line segment:

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

- Point on line segment with ratio m:n

$$
\left(\frac{\mathrm{nx}}{1}+m x_{2}, \frac{n y_{1}+m y_{2}}{m+n}\right)
$$

- Parallelogram:
- ABCD is a parallelogram \Longleftrightarrow diagonals $A C$ and $B D$ have a common midpoint
- Special parallelograms = rhombuses, squares, rectangles
- Special gradients:
- Parallel lines: $m_{1}=m_{2}$
- Perpendicular lines: $m_{1} m_{2}=-1$
- Perpendicular bisector: line passes through midpoint
- To work out point of intersection of two lines/curves, solve equations simultaneously
- Find Tangent: Once the gradient is obtained, substitute the point into the slope-intercept form to get c and the equation.
- Find normal: Obtain the gradient by taking the negative reciprocal (see perpendicular gradients). Once the gradient is obtained, substitute the point (original point) into the slope-intercept form to get c and the equation.
- Find Area, using two methods
- Straight Line graphs: find variables when an equation that does not involve x and y but rather other forms of x and y example: $\left(x^{3}\right)$ or $\ln (y)$. This is represented as a straight line.

Mostly in the form $y=a x^{n}$ or $y=A b^{n}$, that must be converted to the form $y=m x+c$.

9. Circular Measure

- Radian measure:

$$
\pi=180^{\circ} \quad 2 \pi=360^{\circ}
$$

Degree to Rad $=\times \frac{\pi}{180}$ Rad to Degree $=\times \frac{180}{\pi}$

- Arc length:

$$
s=r \theta
$$

- Area of a sector:

$$
A=\frac{1}{2} r^{2} \theta
$$

10. Trigonometry

- Trigonometric ratio of special angles:

- Trigonometric ratios:
$\sec \theta=\frac{1}{\cos \theta} \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta} \quad \cot \theta=\frac{1}{\tan \theta}$
- Trigonometric identities:
$\tan \theta=\frac{\sin \theta}{\cos \theta}$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$\cot ^{2} \theta+1=\operatorname{cosec}^{2} \theta$

- Sketching trigonometric graphs:

11. Permutations \&

Combinations

- Basic counting principle: to find the number of ways of performing several tasks in succession, multiply the number of ways in which each task can be performed:
e.g. $5 \times 4 \times 3 \times 2$
- Factorial: $n!=n \times(n-1) \times(n-2) \ldots \times 3 \times 2 \times 1$
- NOTE: $0!=1$
- Permutations:
- The number of ordered arrangements of r objects taken from n unlike objects is:

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}
$$

- Order matters
- Combinations:
- The number of ways of selecting r objects from n unlike objects is:

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

- Order does not matter

12. Series

12.1. Binomial Expansion

- The binomial theorem allows expansion of any expression in the form $(a+b)^{n}$

$$
\begin{gathered}
(x+y)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} y+{ }^{n} C_{2} x^{n-2} y^{2} \\
+\ldots+{ }^{n} C_{n} y^{n}
\end{gathered}
$$

- e.g. Expand $(2 x-1)^{4}$

$$
\begin{gathered}
(2 x-1)^{4}={ }^{4} C_{0}(2 x)^{4}+{ }^{4} C_{1}(2 x)^{3}(-1) \\
+{ }^{4} C_{2}(2 x)^{2}(-1)^{2}+{ }^{4} C_{3}(2 x)(-1)^{3}+{ }^{4} C_{4}(-1)^{4} \\
=1(2 x)^{4}+4(2 x)^{3}(-1)+6(2 x)^{2}(-1)^{2} \\
+4(2 x)(-1)^{3}+1(-1)^{4} \\
=16 x^{4}-32 x^{3}+24 x^{2}-8 x+1
\end{gathered}
$$

- The powers of x are in descending order

12.2. Sequences \& Series

Arithmetic Progression

- A sequence made by adding the same value each time.
- A common difference d is added or subtracted ($\mathrm{n}-1$) times
- General form: $U_{n}=a+(n-1) d$
- Where n is the number of the term, $\mathrm{a}\left(U_{1}\right)$ is the first term and d is the common difference
- Formula for the sum of the first n terms between $u_{\text {start }}$ to $u_{\text {end }}$

$$
S_{n}=\frac{n}{2}\left(u_{s t a r t}+u_{e n d}\right)
$$

- Example:

Sequence: 1,2,3,4,5,6
Sum: 21

Geometric Progression

- A sequence made by multiplying by the same value each time.
- A common ration r is multiplied or divided ($n-1$) times
- General form: $U_{n}=a r^{n-1}$
- Where n is the number of the term, a is the first term and r is the common ratio

Example:

Sequence: 2, 4, 8, 16, 32
Sum: 62

- Formula for the sum of the first n numbers of a geometric series

$$
S_{n}=a_{1} \times \frac{1-r^{n}}{1-r}
$$

Sum to infinity

- Where the common ratio satisfies the condition:
$-1<r<1$, it is an infinite geometric progression (convergent progression)

$$
S_{\infty}=a_{1} \times \frac{1}{1-r}
$$

13. Vectors in 2 Dimensions

- Position vector: position of point relative to origin, $\overrightarrow{\mathrm{OP}}$
- Forms of vector:
$\binom{a}{b}$
$\overrightarrow{\mathrm{AB}}$
p
- Parallel vectors: same direction but different magnitude
- Generally, $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$
- Magnitude $=\sqrt{i^{2}+j^{2}}$
- Unit vectors: vectors of magnitude 1
- Examples: consider vector $\overrightarrow{\mathrm{AB}}$

$$
\begin{gathered}
\overrightarrow{\mathrm{AB}}=2 \mathbf{i}+3 \mathbf{j} \\
|\overrightarrow{\mathrm{AB}}|=\sqrt{13} \\
\therefore \text { Unit vector }=\frac{1}{\sqrt{13}}(2 \mathbf{i}+3 \mathbf{j})
\end{gathered}
$$

- Collinear vectors: vectors that lie on the same line
- Velocity Vecotr:

$$
\binom{a}{b}
$$

- Getting velocity from speed: Find k to get velocity based on speed

$$
k \times\left|\binom{a}{b}\right|=\text { speed }
$$

- Point of intersection:

Object $1=\left(\frac{\text { initial } \mathrm{x}}{\text { initial } \mathrm{y}}\right)+t\binom{a}{b}$
Object $2=\left(\frac{\text { initial } \mathrm{x}}{\text { initial } \mathrm{y}}\right)+t\binom{c}{d}$
Object $1=$ Object 2 at time t. If both x and y are not same at intersection time then they will never meet.

14. Differentiation \&

 Integration
14.1. Differentiation

FUNCTION	1ST DERIVATIVE	$2^{\text {ND }}$ DERIVATIVE
$y=x^{n}$	$\frac{\mathrm{dy}}{\mathrm{dx}}=n x^{n-1}$	$\frac{d^{2} y}{d x^{2}}=n(n-1) x^{n-2}$

INCREASING FUNCTION	DECREASING FUNCTION
$\frac{d y}{d x}>0$	$\frac{d y}{d x}<0$

- Stationary point: equate first derivative to zero

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=0
$$

- $2^{\text {nd }}$ Derivative: finds nature of the stationary point
- If $\frac{d^{2} y}{d x^{2}}>0 \rightarrow$ minimum stationary point
- If $\frac{d^{2} y}{d x^{2}}<0 \rightarrow$ maximum stationary point

Chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

- Product rule:

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=u \frac{\mathrm{dv}}{\mathrm{dx}}+v \frac{\mathrm{du}}{\mathrm{dx}}
$$

- Quotient rule:

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{v \frac{\mathrm{du}}{\mathrm{dx}}-u \frac{\mathrm{dv}}{\mathrm{dx}}}{v^{2}}
$$

Special Differentials

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dx}}(\sin a x) & =a \cos \mathrm{ax} \\
\frac{\mathrm{dy}}{\mathrm{dx}}(\cos a x) & =-a \sin \mathrm{ax} \\
\frac{\mathrm{dy}}{\mathrm{dx}}(\tan \mathrm{ax}) & =a \sec ^{2} \mathrm{ax} \\
\frac{\mathrm{dy}}{\mathrm{dx}}\left(e^{\mathrm{ax}+b}\right) & =a e^{\mathrm{ax}+b} \\
\frac{\mathrm{dy}}{\mathrm{dx}}(\ln x) & =\frac{1}{x} \\
\frac{\mathrm{dy}}{\mathrm{dx}}(\ln (f(x)) & =\frac{f^{\prime}(x)}{f(x)}
\end{aligned}
$$

- Related rates of change:
- If x and y are related by the equation $y=f(x)$, then the rates of change $\frac{\mathrm{dx}}{\mathrm{dt}}$ and $\frac{\mathrm{dy}}{\mathrm{dt}}$ are related by:

$$
\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dy}}{\mathrm{dx}} \times \frac{\mathrm{dx}}{\mathrm{dt}}
$$

- Small changes:
- If $y=f(x)$ and small change $\delta \mathrm{x}$ in x causes a small change $\delta \mathrm{y}$ in y, then

$$
\delta \mathrm{y} \approx\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{x=k} \times \delta \mathrm{x}
$$

14.2. Integration

$$
\begin{gathered}
\int a x^{n}=a \frac{x^{n+1}}{(n+1)}+c \\
\int(\mathrm{ax}+b)^{n}=\frac{(\mathrm{ax}+b)^{n+1}}{a(n+1)}+c
\end{gathered}
$$

CAIE IGCSE ADD MATHS (0606)

- Definite integral: substitute coordinates/values \& find c
- Indefinite integral: has c (constant of integration)
- Integrating by parts:

$$
\int u \frac{\mathrm{dv}}{\mathrm{dx}} \mathrm{dx}=\mathrm{uv}-\int v \frac{\mathrm{du}}{\mathrm{dx}} \mathrm{dx}
$$

- What to make u : LATE

Logs

Algebra
Trig
e

- To find area under the graph (curve and \mathbf{x}-axis):
- Integrate curve
- Substitute boundaries of x
- Subtract one from another (ignore c)

$$
\int_{a}^{b} \mathrm{y} \tilde{\mathrm{~d} x}
$$

- To find area between curve and y-axis:
- Make x subject of the formula
- Follow above method using y-values instead of x values

Special Integrals

- $\int \sin (\mathrm{ax}+b)=-\frac{1}{a} \cos (\mathrm{ax}+b)+c$
- $\int \cos (\mathrm{ax}+b)=\frac{1}{a} \sin (\mathrm{ax}+b)+c$
- $\int \sec ^{2}(\mathrm{ax}+b)=\frac{1}{a} \tan (\mathrm{ax}+b)+c$
- $\int \frac{1}{\mathrm{ax}+b}=\frac{1}{a} \ln |\mathrm{ax}+b|+c$
- $\int e^{\mathrm{ax}+b}=\frac{1}{a} e^{\mathrm{ax}+b}+c$

14.3. Kinematics

- Particle at instantaneous rest, $v=0$
- Maximum displacement from origin, $v=0$
- Maximum velocity, $a=0$

CAIE IGCSE

Add Maths (0606)

Copyright 2022 by ZNotes
These notes have been created by Arnav Jindal and Asmi Kawatkar for the 2020-22 syllabus
This website and its content is copyright of ZNotes Foundation - © ZNotes Foundation 2022. All rights reserved. The document contains images and excerpts of text from educational resources available on the internet and printed books. If you are the owner of such media, test or visual, utilized in this document and do not accept its usage then we urge you to contact us and we would immediately replace said media.
No part of this document may be copied or re-uploaded to another website without the express, written permission of the copyright owner. Under no conditions may this document be distributed under the name of false author(s) or sold for financial gain; the document is solely meant for educational purposes and it is to remain a property available to all at no cost. It is current freely available from the website www.znotes.org This work is licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International License.

