

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0459 ADDITIONAL MATHEMATICS (BES)

0459/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2 Mark Scheme IGCSE – May/June 2			Syllabus
		2014	0459 732
	y = (x + 2)(x - 1)(x - 3) (x ² + x - 2) or (x ² - 4x + 3) or (x ² - x - 6)	B1 M1	Syllabus 0459 ft <i>their</i> brackets cao
	$y = x^3 - 2x^2 - 5x + 6$	A1	cao
	$\frac{x^2 - 2x - 3}{x^2 - 5x + 6} \times \frac{1}{x^2 - 1}$	M1	$x^2 - 1$ or $(x + 1)(x - 1)$ in denom of 2-layered fraction
	$= \frac{(x-3)(x+1)}{(x-2)(x-3)} \times \frac{1}{(x+1)(x-1)}$	M1 A1	attempt factorise ≥ 2 quad expns correctly factorise ≥ 2 quad expns
	$=\frac{1}{(x-2)(x-1)}$ isw	A1	
(i)	No. of J & F Total	M1	attempted
	$=\frac{97}{132}$ or 0.735 (3 sf)	A1	
	Attempt $P(F)$ and $P(F \mid J)$	M1	attempt $P(J)$ and $P(J F)$
	$P(F) = \frac{72}{132}$		$P(J) = \frac{55}{132}$
	$P(F \mid J) = \frac{30}{55}$ one correct	A1	$P(J \mid F) = \frac{30}{72}$
	Both = $\frac{6}{11}$	A1	Both = $\frac{5}{12}$
	Because these are equal, A & B are indep	A1	Because these are equal, A & B are indep
	$\mathbf{A} = (2.25 \ 2.35)$	B1	
	$\mathbf{C} = \begin{pmatrix} 8500\\ 9400 \end{pmatrix}$	B1	
(ii)	$\mathbf{A} = (2.25 \ 2.35) \begin{pmatrix} 0.020 & 0 \\ 0 & 0.018 \end{pmatrix} \begin{pmatrix} 8500 \\ 9400 \end{pmatrix}$		
	$=(0.045 \ 0.0423) \binom{8500}{9400}$ or	M1	first pair conformable and their product of correct shape
	$(2.25 \ 2.35) \begin{pmatrix} 170\\ 169.2 \end{pmatrix}$	A1	correct figures and shape in first product
	= 780.12 or 780 (3 sf)	A1	dep all three mats conformable

Pa	Page 3 Mark Scheme			Syllabus 7.5 r
10	ige u	IGCSE – May/June 2014	4	0459
			1	Car
(i)	2+2	i or 2(1 + i)	B1	Syllabus 0459r other other or $2\sqrt{2} \operatorname{cis} \frac{\pi}{4}$ or $2\sqrt{2} \operatorname{cis} \frac{\pi}{4}$ B2 for $\sqrt{2}$ i; B1 for ki ($k \neq \sqrt{2}$ or 0)
(ii)	$\sqrt{2}$ i	or $0 + \sqrt{2}$ i	B2	B2 for $\sqrt{2}$ i; B1 for ki $(k \neq \sqrt{2} \text{ or } 0)$
(iii)		$\frac{2i + \sqrt{2}i}{2}$	M1	ft their (i) and (ii)
	= 1 +	$\frac{2+\sqrt{2}}{2}$ i or 1 + 1.71i (3 sf)	A1	
(i)	(x + 4)	re (-4, 3) stated or implied $(4)^{2} + (y-3)^{2}$	B1 M1	
		$3x + 16 + y^{2} - 6y + 9 = 5$ $y^{2} + 8x - 6y + 20 = 0$	M1 A1	dep M1
(ii)			B1	seen or implied
		$=-\frac{1}{2}(x+5)$ oe	M1	or $-4 = -1 \times 1 + c$ ft their gradient
	<i>y</i> = –	$\frac{1}{2}x - \frac{3}{2}$ oe	A1	cao
(i)	P(X=	$(=2) = \frac{2}{5} \times \frac{1}{4}$ (= $\frac{1}{10}$ oe)	M1	
	P(X=	$= 3) = \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} (= \frac{1}{5} \text{ oe})$	M1	correct products for any two of $P(X=2)$, $P(X=3)$, $P(X=4)$ M1M1
	P(X=	$=4) = 1 - (\frac{1}{10} + \frac{1}{5} + \frac{2}{5}) (=\frac{3}{10} \text{oe})$	M1	$1 - (\frac{2}{5} + \text{sum of two attempted})$ P(X = n)) M1
	$\frac{1}{10}$,	$\frac{1}{5}, \frac{3}{10}$	A1	all three probs correct
(ii)	$=\dot{4}$	attempted	M1 A1ft	
	$ \begin{vmatrix} \Sigma x^2 p \\ - 4^{*} \\ = 1 \end{vmatrix} $	attempted (= 17)	M1 M1 A1ft	dep previous M1 and +ve result
}	$(1 + \gamma)$	$\sqrt{2}^2 = 3 + 2\sqrt{2}$	B1	or $(1 - \sqrt{2})^2 = 3 - 2\sqrt{2}$
	$\frac{4-}{3+2}$	$ \sqrt{2}^{2} = 3 + 2\sqrt{2} \sqrt{2} \\ \sqrt{2} \times \frac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} $	M1	Mult numerator and denominator by $3-2\sqrt{2}$ or $(1-\sqrt{2})^2$
	16 –	$11\sqrt{2}$	A1 A1	A1 for numerator = $16 - 11\sqrt{2}$ A1 for denominator = 1 oe

	Page 4	ł	Mark Scheme		Syllabus
			IGCSE – May/June 2	014	0459 230
9		Elimi	nate x or y	M1	ente.
		$4x^2 - 3$	$x - 5 = 0$ or $4y^2 - 45y = 0$	A1	Tig
			rise quadratic	M1	Se.
		$x = \frac{5}{4}$	and -1	A1	Syllabus 0459 r 0459 s combridge.g
		$y = \frac{4}{4}$	5 and 0	A1	
10	(a)		$= -0.5 \text{ or } \sin 330^{\circ} \text{ or } \sin 210^{\circ}$	M1	
		105°		A1	
		165°		A1	answer(s) only do(es) not score
	(b) (i)	sinP =	$=\frac{4}{5}$ or $\cos Q = \frac{12}{13}$	B 1	
		their	$= \frac{4}{5} \text{ or } \cos Q = \frac{12}{13}$ $\frac{4}{5} \times their \frac{12}{13} + \frac{3}{5} \times \frac{5}{13}$	M1	
		$\frac{63}{65}$	5 15 5 15	A1	answer only does not score
	(ii)	$\frac{12}{1-\frac{5}{12}}$	- 2 - × 2	M1	
		$\frac{29}{2}$	oe	A1	answer only does not score
11	(i)	-2		B1	
	(ii)	$f \ge -g$)	B1	allow $y \ge -3$ or $[-3, \infty)$
	(iii)	$\sqrt{y+}$	9 seen	M1	may be implied by next mark
		$\sqrt{x+x}$	9 seen	M1	interchanging x and y
		$f^{-1}(x)$	$= -2 + \sqrt{x+9}$ oe	A1	
	(iv)		et domain	B 1	
			ct use of mod at (1, 0)	B1 B1	Allow unlabelled cusp on +ve <i>x</i> -axis

	Mary Mary					
	Page	5 Mark Scheme IGCSE – May/June 2014		Syllabus r		
				0459		
12	(i)	-4i + 2j 2 $\sqrt{5}$ or $\sqrt{20}$ or 4.47 (3 sf)	M1	May be implied by answer		
	(ii)	12 i – 6 j	A1 M1	Syllabus 0459 May be implied by answer		
		$k = -\frac{1}{3}$	A1			
	(iii)	They are collinear or equivalent	B1	or They all lie on the same straight line.		
	(iv)	$\overrightarrow{OD} = 4\mathbf{i} - 2\mathbf{j}$	B1			
		$\overrightarrow{OE} = (their \ \overrightarrow{OD})$ 1.6 i - 0.8 j	M1 A1			
13	(a)	Correct change of base to $\frac{\log_b c}{\log_b a}$	B1			
		$\log_b \left(a^2\right)^{\frac{3}{2}}$	B1			
		$\log_b a^3 - \log_b c$	M1			
		$\log b\left(\frac{a^3}{c}\right)$	A1			
	(b)	$3^{2x} - 3 \times 3^{x} - 4 = 0$ (3 ^x + 1)(3 ^x - 4) 3 ^x = 4	M1 M1 A1	allow substituted letters for 3^x ignore other soln, if given, for this A1		
		1.26(18) or log ₃ 4 only	A1	$3^x = -1$ must be discarded for last A1		