

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com

**ADDITIONAL MATHEMATICS (US)** 

0459/01

Paper 1

For Examination from 2013

SPECIMEN MARK SCHEME

2 hours

**MAXIMUM MARK: 80** 

## \*\*ks are not lost

## **Mark Scheme Notes**

- Marks are of the following three types:
  - Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark, and in some cases an M mark can be implied from a correct answer.
  - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
  - B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note. B2 or A2 means that the candidate can earn 2 or 0.
  - B2, 1, 0 means that the candidate can earn anything from 0 to 2. –1 each error. A mark is deducted from the total mark available up to the maximum mark available for that question. The minimum mark awarded is zero e.g., if a candidate makes 3 errors in a question worth 2 marks they score zero.
- The following abbreviations may be used in a mark scheme.
  - AG 'Answer given' on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid).
  - cao 'Correct answer only' (emphasizing that no "follow through" from a previous error is allowed).
  - isw 'Ignore subsequent working'.
  - oe 'Or equivalent'.
  - sc 'Special case'. Awarded for some questions where e.g., the candidate has not used the method specified but a different, correct, method leading to the correct answer.
  - soi 'Seen or implied'.

| Question | Answer                                                                                                                                                                                              | Mark         | Guidance  B1 for $(x+2)^2 + (y-8)^2$                                                                                         |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|
| 1        | $(x+2)^2 + (y-8)^2 = 7^2$<br>or $x^2 + y^2 + 4x - 16y + 19 = 0$                                                                                                                                     | B2 [2]       | <b>B1</b> for $(x + 2)^2 + (y - 8)^2$<br>or $x^2 + 4x + y^2 + 16y$ oe<br><b>B1</b> for $= 7^2$ or $+ 2^2 + 8^2 - 7^2 = 0$ oe |
| 2 (a)    | Any two valid reasons e.g. Size of population may make selection of every item impossible Gathering information may necessitate destruction of items e.g. life of a battery                         | B1 + B1      |                                                                                                                              |
| (b)      | Every member of population has the same chance of being selected at every stage if random and choice of 1 <sup>st</sup> item immediately rules out approximately 90% of the remaining population oe | B2, 1, 0 [4] | Explanation must incorporate the essential idea of random sampling.                                                          |
| 3        | $(z_1 =) \frac{3 + \sqrt{7i^2}}{2}$                                                                                                                                                                 | M1           | allow $z = $ ; allow $\frac{3 \pm \sqrt{7i^2}}{2}$                                                                           |
|          | $(z_{1} =) \frac{3 + \sqrt{7i^{2}}}{2}$ $(z_{1} =) \frac{3 + i\sqrt{7}}{2}$ $(z_{2} =) \frac{3 - i\sqrt{7}}{2}$                                                                                     | A1           |                                                                                                                              |
|          | $(z_2 =) \frac{3 - i\sqrt{7}}{2}$                                                                                                                                                                   | B1ft         | ft the complex conjugate of their $z_1$ $\frac{3 \pm i\sqrt{7}}{2}$ scores 3 marks                                           |
|          |                                                                                                                                                                                                     | [3]          |                                                                                                                              |

© UCLES 2012

| 4 | $(PS)^{2} = (x-6)^{2} + (y-1)^{2}$ $(x-6)^{2} + (y-1)^{2} = (x+1)^{2}$                                                                   | B1<br>M1     | *acambril                                                                                                                                |
|---|------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
|   | $x^{2} - 12x + 36 + y^{2} - 2y + 1 = x^{2} + 2x + 1$                                                                                     | M1           | To All                                                                                                                                   |
|   | y(y-2) = 14x - 36 AG                                                                                                                     | A1 [4]       |                                                                                                                                          |
| 5 | $\left(5 + 2\sqrt{3}\right)^2 = 37 + 20\sqrt{3}$                                                                                         | B1           | Seen anywhere                                                                                                                            |
|   | $ (5 + 2\sqrt{3})^2 = 37 + 20\sqrt{3} $ $ \frac{(37 + 20\sqrt{3})}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}} $              | M1           | Or <b>B1</b> for a correct pair of simultaneous equations $37 = 2p + 3q$ and $20 = p + 2q$                                               |
|   |                                                                                                                                          |              | and M1 for attempting to solve their equations either by elimination or substitution, condone one error.                                 |
|   | $14+3\sqrt{3}$                                                                                                                           | A1+A1<br>[4] | Answer only scores zero.                                                                                                                 |
| 6 | Proving triangle $AED$ congruent to triangle $CFB$ $AD = BC$ (parallelogram) $ED = FB$ (given)                                           |              | Or triangle $DEC$ congruent to $BFA$<br>AB = DC (parallelogram)                                                                          |
|   | $\angle ADE = \angle CBF \text{ (alternate angles are equal)}$ $\Delta AED \equiv \Delta CFB \text{ (SAS)}$                              | B3, 2, 1, 0  | $\angle ABF = \angle CDE$ (alternate angles are equal)<br>$\Delta ABF \equiv \Delta CDE$ (SAS)<br>Must have reasons                      |
|   | $\angle AED = \angle CFB$ (corresponding angles of congruent triangles)<br>$\angle AEF = \angle CFE$ (each equal to $180 - \angle AED$ ) |              | $\angle AFB = \angle ECD$ (corresponding angles of congruent triangles)<br>$\angle AFE = \angle FEC$ (each equal to $180 - \angle AFB$ ) |
|   | Thus alternate angles are equal                                                                                                          | DB1          | Thus alternate angles are equal                                                                                                          |
|   | AE = FC (corresponding sides of congruent triangles)                                                                                     | DB1 [5]      | AF = EC (corresponding sides of congruent triangles)<br>Other valid proofs should be awarded appropriate credit                          |

| 7     | $\mathbf{A}^{-1} = k \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$                                                                                           | B1                   | AC AMBIT                                                       |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------|
|       | $k = \frac{1}{5}$                                                                                                                                             | B1                   |                                                                |
|       | $\mathbf{A}^2 = \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -9 \\ 3 & -2 \end{pmatrix}$ | M1<br>A1             | attempt to multiply with at least two elements correct correct |
|       | $\mathbf{B} = 2 \times \text{their} \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix} - \text{their} \begin{pmatrix} 1 & -9 \\ 3 & -2 \end{pmatrix}$              | M1                   |                                                                |
|       | $\begin{pmatrix} 1 & 15 \\ -5 & 6 \end{pmatrix}$                                                                                                              | A1<br>[6]            |                                                                |
| 8 (i) | $0.97 \times 0.04$<br>$0.05 \times 0.96$<br>Summing their products<br>0.0868                                                                                  | M1<br>M1<br>M1<br>A1 |                                                                |
| (ii)  | their $\frac{0.0388}{0.0868}$<br>0.447(00) A.G.                                                                                                               | M1<br>A1<br>[6]      |                                                                |

|    |      |                                                                   |             | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|------|-------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  |      | Eliminate x or y<br>$4x^2 + 4x - 15 = 0$ or $4y^2 - 28y + 33 = 0$ | M1<br>A1    | GG GAMBATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |      | Factorise 3 term quadratic                                        | M1          | Office of the second of the se |
|    |      | $x = \frac{3}{2} \text{ and } -\frac{5}{2}$                       | <b>A1</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |      | $y = \frac{11}{2} \text{ and } \frac{3}{2}$                       | <b>A1</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |      | $\sqrt{4^2+4^2}$                                                  | <b>M</b> 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |      | $\sqrt{32}$ or $4\sqrt{2}$ or 5.66                                | <b>A1</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |      | <b>V</b> 22 01 1.00                                               | [7]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 | (i)  | $m_{AB} = \frac{1}{5}$                                            | B1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |      | Uses $m_1 m_2 = -1 \ (= m_{BC} = -5)$                             | M1          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |      | BC: $y - 5 = -5(x - 6)$ or $5x + y = 35$                          | M1          | or gradient $BC = \frac{5}{6 - x_c} = -5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |      | C(7,0)                                                            | <b>A1</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |      | CD: $y-0=\frac{1}{5}(x-7)$ oe                                     | A1ft        | ft their $C$ and $m_{AB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | (ii) | D (1,-1.2)                                                        | B1ft<br>[6] | ft their equation of CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|        |                                                                                                                                                                             |                             | 20-                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|
| 11 (a) | $\sin x = 2\cos x$ $\tan x = 2$ $63.4$ $243.4$                                                                                                                              | M1<br>M1<br>A1<br>A1        | Pac annun                                                                                                     |
| (b)    | $2(1 - \cos^{2} y) + 3\cos y = 0$ $2\cos^{2} y - 3\cos y - 2 = 0$ $(2\cos y + 1)(\cos y - 2) = 0$ $\cos y = -\frac{1}{2}$ 120 240                                           | M1<br>M1<br>A1<br>A1<br>[8] | or correct use of quadratic formula or completing the square extra solutions within range –1 (once each part) |
| 12     | $(1200\mathbf{i} + 240\mathbf{j}) \div 4$ their $(300\mathbf{i} + 60\mathbf{j}) - (260\mathbf{i} + 156\mathbf{j})$ $40\mathbf{i} - 96\mathbf{j}$ $\sqrt{40^2 + 96^2}$ $104$ | M1<br>M1<br>A1<br>M1<br>A1  |                                                                                                               |
|        | $\tan^{-1}\left(\frac{96}{40}\right) \text{ or } \tan^{-1}\left(\frac{96}{40}\right)$ $157(.4)$                                                                             | M1 A1 [7]                   | clear indication of direction                                                                                 |

© UCLES 2012

| (i)   | $4\pi$ , $16\pi$ , $36$<br>$4\pi$ , $16\pi - 4$<br>$4\pi$ , $12\pi$ , $20$ | $4\pi$ , $36\pi$ –         | 16π                                              |                           |      | B1<br>M1    | VaCannbrida   |
|-------|----------------------------------------------------------------------------|----------------------------|--------------------------------------------------|---------------------------|------|-------------|---------------|
| (ii)  | $\frac{1}{9}$ soi                                                          |                            |                                                  |                           |      | B1          |               |
|       | $\frac{1}{12}$                                                             |                            |                                                  |                           |      | B1          |               |
| (iii) | S                                                                          | 0                          | 3                                                | 6                         | 12   | B2, 1, 0    |               |
|       | P(S=s)                                                                     | $\frac{1}{4}$              | <u>5</u><br>12                                   | 3<br>12                   | 1/12 |             |               |
| (iv)  | their $0 \times \frac{1}{4}$                                               | $+3 \times \frac{5}{12} +$ | $6 \times \frac{3}{12} + 12 \times \frac{3}{12}$ | $\times \frac{1}{12}$ soi |      | M1          |               |
|       | 3.75                                                                       |                            |                                                  |                           |      | A1<br>A1 ft | ft their E(S) |
|       | 75                                                                         |                            |                                                  |                           |      | A1 ft [9]   |               |

| 14 (a) (i) | $fg(x) = 3 - \frac{x}{x+2}$                                                               | B1                   | acambril                                                            |
|------------|-------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|
| (ii)       | $3 - \frac{x}{x+2} = 10$ $3(x+2) - x = 10 (x+2) \text{ or better}$ leading to $x = -1.75$ | M1<br>A1             | for dealing with fraction appropriately state this mathematically   |
| (b) (i)    | h(x) > 4                                                                                  | B1                   | for attempting to obtain inverse function                           |
| (ii)       | $h^{-1}(x) = e^{x-4}$ $h^{-1}(9) = e^{5} (\approx 148)$                                   | M1<br>A1             | or M1 for $4 + \ln x = 9$ and<br>A1 for $x = e^5$ ( $\approx 148$ ) |
| (iii)      | correct graphs idea of symmetry                                                           | B1 + B1<br>B1<br>[9] | B1 for each curve                                                   |
|            |                                                                                           | [80]                 |                                                                     |

## **BLANK PAGE**

www.PanaCambridge.com