

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com

ADDITIONAL MATHEMATICS (US)

0459/02

Paper 2

For Examination from 2013

SPECIMEN MARK SCHEME

2 hours

MAXIMUM MARK: 80

**ks are not lost

Mark Scheme Notes

- Marks are of the following three types:
 - Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark, and in some cases an M mark can be implied from a correct answer.
 - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note. B2 or A2 means that the candidate can earn 2 or 0.
 - B2, 1, 0 means that the candidate can earn anything from 0 to 2. –1 each error. A mark is deducted from the total mark available up to the maximum mark available for that question. The minimum mark awarded is zero e.g., if a candidate makes 3 errors in a question worth 2 marks they score zero.
- The following abbreviations may be used in a mark scheme.
 - AG 'Answer given' on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid).
 - cao 'Correct answer only' (emphasizing that no "follow through" from a previous error is allowed).
 - isw 'Ignore subsequent working'.
 - oe 'Or equivalent'.
 - sc 'Special case'. Awarded for some questions where e.g., the candidate has not used the method specified but a different, correct, method leading to the correct answer.
 - soi 'Seen or implied'.

Question	Answer	Marks	Guidance
1	$\frac{x+1}{x^2-3\sqrt{x^3+x^2+4x+6}}$		a ₁
	$\frac{x+1}{x^2-3} x^3 + x^2 + 4x + 6$ $\frac{x^3 -3x}{x^2+7x+6}$ $\frac{x^2-3}{7x+9}$	M1	for getting as far as $x^2 + 7x$ or for a reasonable attempt at a valid method
	a = 1, b = 7, c = 9	A2, 1, 0 [3]	-1 each error
2	$\overrightarrow{PQ} = \begin{pmatrix} 9 \\ 20 \end{pmatrix} - \begin{pmatrix} 6 \\ 7 \end{pmatrix}$	M1	
	$\overrightarrow{PQ} = \begin{pmatrix} 9 \\ 20 \end{pmatrix} - \begin{pmatrix} 6 \\ 7 \end{pmatrix}$ $\overrightarrow{QR} = \begin{pmatrix} 12 \\ 52 \end{pmatrix}$	A1	
	$\overrightarrow{OR} = \begin{pmatrix} 21\\72 \end{pmatrix}$	B1ft	
	$\left \overrightarrow{OR} \right = \sqrt{21^2 + 72^2} = 75$	M1	
	$\left \overrightarrow{OR} \right = \sqrt{21^2 + 72^2} = 75$ Unit vector = $\frac{1}{75} \binom{21}{72}$ oe	A1	$\begin{pmatrix} 21/75 \\ 72/75 \end{pmatrix} \text{ or } \begin{pmatrix} 7/25 \\ 24/25 \end{pmatrix} \text{ or } \begin{pmatrix} 0.28 \\ 0.96 \end{pmatrix}$
		[5]	
3	$\frac{(3-x)^{\frac{-2}{3}} + (3-x)^{\frac{1}{3}}}{(3-x)^{\frac{1}{3}}}$ $(3-x)^{-1} + 1$ their $(3-x)^{-1} = \frac{2}{3} - 1$ or better	В1	soi
	$(3-x)^{-3} (3-x)^{-1} + 1$	B1+B1	
	their $(3-x)^{-1} = \frac{2}{3} - 1$ or better	M1	
	6	A1 [5]	

			3
4	$f(3) = \frac{1}{2}f(2) + f(1)$	B1	soi
	$28.5 = \frac{1}{2} \times 17 + f(1)$	M1	The state of the s
	b=20	A1	
	$17 = \frac{1}{2} \times \text{their } 20 + \text{f(0)}$	M1	
	a = 7	A1 [5]	
5 (a) (i)	Accuracy of plots	B2, 1, 0	-1 each error, allow tolerance ±1 mm
(ii)	$\overline{o} = 26$ $\overline{w} = 55$ Reasonable line of best fit through their (26, 55) Linear equation with reasonable slope	B1 + B1 B1 ft B1 ft	
(iii)	Approximately 27	B1ft [7]	ft their line provided line reasonable
6 (a)	Express as powers of 2 or 4 or 8 Applies rules of indices 7	M1 DM1 A1	[2x - (5 - x) = 4x - 3(x - 3)]
(b)	$lg(2y + 10) + lg y = lg \{y(2y + 10)\}$ or 2 = lg 100 $2y^{2} + 10y = 100 \text{ oe}$ 5 only	B1 B1 B1 [6]	

7	Either (300 240), $\begin{pmatrix} 0.6 & 0.3 & 0.1 \\ 0.5 & 0.4 & 0.1 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 7 \\ 10 \end{pmatrix}$		The order of writing down is not important for B2, pre matrices they have written down are conformable if the written in the correct order.
	or (5 7 10), $\begin{pmatrix} 0.6 & 0.5 \\ 0.3 & 0.4 \\ 0.1 & 0.1 \end{pmatrix}$, $\begin{pmatrix} 300 \\ 240 \end{pmatrix}$	B2, 1, 0	-1 each incorrect matrix.
	First product, either		
	$(300 240) \begin{pmatrix} 0.6 & 0.3 & 0.1 \\ 0.5 & 0.4 & 0.1 \end{pmatrix} \text{ or } \begin{pmatrix} 0.6 & 0.3 & 0.1 \\ 0.5 & 0.4 & 0.1 \end{pmatrix} \begin{pmatrix} 5 \\ 7 \\ 10 \end{pmatrix} \text{ or } (5 7)$		
	$10) \begin{pmatrix} 0.6 & 0.5 \\ 0.3 & 0.4 \\ 0.1 & 0.1 \end{pmatrix} \text{ or } \begin{pmatrix} 0.6 & 0.5 \\ 0.3 & 0.4 \\ 0.1 & 0.1 \end{pmatrix} \begin{pmatrix} 300 \\ 240 \end{pmatrix}$	M1	selection of pair of matrices conformable for multiplication and an attempt to multiply
	(300 186 54) or $\binom{6.1}{6.3}$ or (6.1 6.3) or $\binom{300}{186}$	A1	
	Second product, either		
	(300 186 54) $\begin{pmatrix} 5 \\ 7 \\ 10 \end{pmatrix}$ or (300 240) $\begin{pmatrix} 6.1 \\ 6.3 \end{pmatrix}$ or		
	$(6.1 \ 6.3) \begin{pmatrix} 300 \\ 240 \end{pmatrix} \text{ or } (5 \ 7 \ 10) \begin{pmatrix} 300 \\ 186 \\ 54 \end{pmatrix}$	M1	selection of their first product and remaining matrix, conformable for multiplication and an attempt to multiply
	3342	A1 [6]	if M0 then SC2 for correct arithmetic method leading to 3342

			1
8 (i)	$\frac{3}{8} = \frac{5}{8} - \cos A \sin B$	M1	*aCannon
	$\frac{1}{4}$ oe	A1	
(ii)	$\frac{5}{8} + \text{their } \frac{1}{4}$ $\frac{7}{8}$	M1	
	$\frac{7}{8}$	A1	
(iii)	$\frac{\tan A}{\tan B} = \frac{\frac{\sin A}{\cos A}}{\frac{\sin B}{\cos B}}$	M1	or $\cos A = \text{their } \frac{1}{4 \sin B}$ and $\sin A = \frac{5}{8 \cos B}$ and an attempt at $\sin A$
	$= \frac{\sin A \cos B}{\sin A \cos B}$		$\frac{\sin A}{\cos A}$ oe
		A1	or $\tan A = \frac{5}{8\cos B} \times 4\sin B$ oe
	$\cos A \sin B$ $= \frac{\frac{5}{8}}{\frac{1}{4}} = 2.5$	A1	or $\tan A = \frac{5}{2} \tan B$ therefore $\frac{\tan A}{\tan B} = \frac{5}{2}$ oe
	/ T	[7]	
9 (i) & (ii)	For correctly standardizing once in either (i) or (ii)	M1	$z = \frac{27 - 24}{4}$ or $z = \frac{20 - 24}{4}$ or $z = \frac{25 - 24}{4}$
	0.2266	A1	4 4 4
	0.5987	A1	
	0.1587	A1	
	0.5987 – 0.1587 oe	M 1	
	0.44	A1	
		[6]	

	2	2			
7		2	, '		
	7		SA		
		-	~	20	١
				0	

				20
10	(i)	-3 - 2i	B1	ft their (i).
	(ii)	3+ Im	B2, 1, 0	ft their (i). —1 for each error or omission.
		$L_{\mathbf{X}}$ 2-		
		1		
		-3 -2 -1 0 1 2 3		
		X M -2- N		
	(iii)	MN is parallel to the Re axis; LM is parallel to the Im axis, therefore $LM \perp MN$ and LMN is right-angled at M	B2, 1, 0	
	(iv)	$-15 + 3i + 10i - 2i^{2}$ Correct use of $i^{2} = -1$ in their expression $-13 + 13i$	M1 M1 A1	for at least 3 out of 4 correct soi
	(v)	$\left(13\sqrt{2}, \frac{3}{4}\pi\right)$ oe	B1ft + B1ft	ft their (iv)

[10]

WWW. Papa Cambridge.com

11	(i)	Amplitude 4, Period 180
----	-----	-------------------------

(ii)
$$x = 90, y = -6$$
 oe

(iii)
$$2x = \cos^{-1}\left(\frac{2}{4}\right) \text{ or better}$$
$$x = 30$$
$$x = 150$$

(iv)

(v) Section between (x =) 30 and 150 reflected in x-axis oe

B1 + B1

$$B1 + B1$$

M1

A1 A1

B2, 1, 0

2 and -6 marked on the *y*-axis 30 and 150 marked on the *x*-axis correct shape between 0 and 180 ignore any extra sections outside 0 to 180.

B1

[10]

any portion of the graph below the *x*- axis will be reflected above.

			32	_
12 (a)	$x = -1$ or 7 or $-\frac{1}{2}$ seen	M 1	for attempt to find a root for attempt to find quadratic factor	-
	Either $(x+1)(2x^2-13x-7)$	M1	for attempt to find quadratic factor	0
	or $(x-7)(2x^2+3x+1)$	A1	for correct quadratic factor	
	or $(2x+1)(x^2-6x-7)$	M1	for attempt to factorize their quadratic factor	
	leading to $(x + 1)(x - 7)(2x + 1)$	A1	for correct factorization Must be 3 term	
(b)	Find $f(2)$ or $f(-3)$ 8 + 4a - 30 + b = 0	M1	or long division as far as remainder	
	or 4a + b = 22	A1		
	-27 + 9a + 45 + b = 75 or $9a + b = 57$	A1		
	Solve simultaneous equations	M1		
	a = 7, b = -6	A1		
	1,0	[10]		
		[80]		

BLANK PAGE

www.PanaCambridge.com