

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS (US)

Paper 1 SPECIMEN MARK SCHEME 0459/01 For Examination from 2013

2 hours

MAXIMUM MARK: 80

This document consists of 9 printed pages and 1 blank page.

Mark Scheme Notes

- Marks are of the following three types:
- www.papacambridge.com Method mark, awarded for a valid method applied to the problem. Method marks are not lost Μ for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark, and in some cases an M mark can be implied from a correct answer.
 - А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note. B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2. -1 each error. A mark is deducted from the total mark available up to the maximum mark available for that question. The minimum mark awarded is zero e.g., if a candidate makes 3 errors in a question worth 2 marks they score zero.
- The following abbreviations may be used in a mark scheme.
 - AG 'Answer given' on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid).
 - 'Correct answer only' (emphasizing that no "follow through" from a previous error is cao allowed).
 - 'Ignore subsequent working'. isw
 - 'Or equivalent'. oe
 - 'Special case'. Awarded for some questions where e.g., the candidate has not used the \mathbf{sc} method specified but a different, correct, method leading to the correct answer.
 - soi 'Seen or implied'.

	3		MAN D
Question	Answer	Mark	Guidance
1	$(x+2)^{2} + (y-8)^{2} = 7^{2}$ or $x^{2} + y^{2} + 4x - 16y + 19 = 0$	B2 [2]	B1 for $(x + 2)^2 + (y - 8)^2$ or $x^2 + 4x + y^2 + 16y$ oe B1 for = 7^2 or $+ 2^2 + 8^2 - 7^2 = 0$ oe
2 (a)	Any two valid reasons e.g. Size of population may make selection of every item impossible Gathering information may necessitate destruction of items e.g. life of a battery	B1 + B1	
(b)	Every member of population has the same chance of being selected at every stage if random and choice of 1^{st} item immediately rules out approximately 90% of the remaining population oe	B2, 1, 0 [4]	Explanation must incorporate the essential idea of random sampling.
3	$(z_1 =) \frac{3 + \sqrt{7i^2}}{2}$	M1	allow $z =$; allow $\frac{3 \pm \sqrt{7i^2}}{2}$
	$(z_1 =)\frac{3 + i\sqrt{7}}{2}$	A1	
	$(z_2 =)\frac{3 - i\sqrt{7}}{2}$	B1ft	ft the complex conjugate of their z_1 $\frac{3 \pm i\sqrt{7}}{2}$ scores 3 marks
		[3]	

			424
		4	A.D.B.
4	$(PS)^{2} = (x-6)^{2} + (y-1)^{2}$ (x-6) ² + (y-1) ² = (x + 1) ²	B1 M1	aCannut
	$x^{2} - 12x + 36 + y^{2} - 2y + 1 = x^{2} + 2x + 1$	M1	
	y(y-2) = 14x - 36 AG	A1 [4]	
5	$\left(5 + 2\sqrt{3}\right)^2 = 37 + 20\sqrt{3}$	B1	Seen anywhere
	$\frac{\left(37 + 20\sqrt{3}\right)}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}}$	M1	Or B1 for a correct pair of simultaneous equations $37 = 2p + 3q$ and $20 = p + 2q$
			and M1 for attempting to solve their equations either by elimination or substitution, condone one error.
	$14 + 3\sqrt{3}$	A1+A1 [4]	Answer only scores zero.
6	Proving triangle <i>AED</i> congruent to triangle <i>CFB</i> AD = BC (parallelogram) ED = EB (given)		Or triangle <i>DEC</i> congruent to <i>BFA</i> AB = DC (parallelogram)
	$\angle ADE = \angle CBF$ (alternate angles are equal) $\triangle AED \equiv \triangle CFB$ (SAS)	B3, 2, 1, 0	$\angle ABF = \angle CDE$ (alternate angles are equal) $\triangle ABF \equiv \triangle CDE$ (SAS) Must have reasons
	$\angle AED = \angle CFB$ (corresponding angles of congruent triangles) $\angle AEF = \angle CFE$ (each equal to $180 - \angle AED$)		$\angle AFB = \angle ECD$ (corresponding angles of congruent triangles) $\angle AFE = \angle FEC$ (each equal to $180 - \angle AFB$)
	Thus alternate angles are equal	DB1	Thus alternate angles are equal
	AE = FC (corresponding sides of congruent triangles)	DB1 [5]	AF = EC (corresponding sides of congruent triangles) Other valid proofs should be awarded appropriate credit

		5	ANNA DE
7	$\mathbf{A}^{-1} = k \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$	B1	SaCambr
	$k = \frac{1}{5}$ $\mathbf{A}^{2} = \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -9 \\ 3 & -2 \end{pmatrix}$	B1 M1 A1	attempt to multiply with at least two elements correct correct
	$\mathbf{B} = 2 \times \text{their} \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix} - \text{their} \begin{pmatrix} 1 & -9 \\ 3 & -2 \end{pmatrix}$	M1	
	$\begin{pmatrix} 1 & 15 \\ -5 & 6 \end{pmatrix}$	A1 [6]	
8 (i)	0.97×0.04 0.05×0.96 Summing their products 0.0868	M1 M1 M1 A1	
(ii)	their $\frac{0.0388}{0.0868}$ 0.447(00) A.G.	M1 A1 [6]	

		6	MANN. Dab
9	Eliminate x or y $4x^2 + 4x - 15 = 0$ or $4y^2 - 28y + 33 = 0$ Factorise 3 term quadratic $x = \frac{3}{2}$ and $-\frac{5}{2}$ $y = \frac{11}{2}$ and $\frac{3}{2}$ $\sqrt{4^2 + 4^2}$ $\sqrt{32}$ or $4\sqrt{2}$ or 5.66	M1 A1 M1 A1 A1 M1 A1 [7]	Cambridge.co.
10 (i)	$m_{AB} = \frac{1}{5}$ Uses $m_1m_2 = -1 \ (= m_{BC} = -5)$ BC: $y - 5 = -5(x - 6)$ or $5x + y = 35$ C (7,0) CD: $y - 0 = \frac{1}{5}(x - 7)$ oe	B1 M1 M1 A1 A1ft	or gradient $BC = \frac{5}{6 - x_c} = -5$ ft their <i>C</i> and m_{AB}
(ii)	D (1,-1.2)	B1ft [6]	ft their equation of CD

		7	MMM. Dabas	
11 (a)	sin x = 2cos x tan x = 2 63.4 243.4	M1 M1 A1 A1	Cambrid	
(b)	$2(1 - \cos^{2} y) + 3\cos y = 0$ $2\cos^{2} y - 3\cos y - 2 = 0$ $(2\cos y + 1)(\cos y - 2) = 0$ $\cos y = -\frac{1}{2}$ 120 240	M1 M1 A1 A1 [8]	or correct use of quadratic formula or completing the square extra solutions within range –1 (once each part)	1
12	$(1200i + 240j) \div 4$ their (300i + 60j) - (260i + 156j) 40i - 96j $\sqrt{40^2 + 96^2}$ 104	M1 M1 A1 M1 A1		
	$\tan^{-1}\left(\frac{96}{40}\right) \text{ or } \tan^{-1}\left(\frac{96}{40}\right)$ 157(.4)	M1 A1 [7]	clear indication of direction	

	9)	MANN. Dap
14 (a) (i)	$fg(x) = 3 - \frac{x}{x+2}$	B1	acambrid
(ii)	$3 - \frac{x}{x+2} = 10$ 3(x+2) - x = 10 (x+2) or better leading to $x = -1.75$	M1 A1	for dealing with fraction appropriately state this mathematically
(b) (i)	h(x) > 4	B1	for attempting to obtain inverse function
(ii)	$h^{-1}(x) = e^{x-4}$ $h^{-1}(9) = e^{5} (\approx 148)$	M1 A1	or M1 for $4 + \ln x = 9$ and A1 for $x = e^5$ (≈ 148)
(iii)	correct graphs idea of symmetry	B1 + B1 B1 [9]	B1 for each curve
		[80]	

BLANK PAGE