www.papacambridge.com MARK SCHEME for the October/November 2012 series

0444 MATHEMATICS (US)

0444/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

F	Page 2	Mark Scheme	Syllabus Syllabus
		IGCSE – October/November 2012	0444 23
bre	eviations		"ann
)	correct answer	only	01
5	correct solutior	only	30
p	dependent		-c
-	follow through	after error	
V	ignore subsequ	ent working	
	or equivalent	2	
2	Special Case		
VW	without wrong	working	
	anything round	ing to	
i	seen or implied	5	

Qu.	Part	Answers	Mark	Part Marks
1	(a) (i)	[0]9 15 [am]	1	Accepable form of time
	(ii)	64.9 or 65.[0] or 64.92 to 64.98	2	M1 for 92 ÷ (1 and 25 mins) or 92/85 × 60 o.e. or 92 ÷ (1.41 to 1.42)
	(iii)	11.76or 11.8	1	
	(iv)	80	3	M2 for 92 ÷ 1.15 o.e. or M1 for 115% associated with 92
	(b) (i)	$(150 \div (11+16+3) \text{ or } 150 \times 3 \text{ o.e.})$ then $\times 3$ or $\div 30$	M1 E1	Correct first step Correct conclusion
	(ii)	11:9 final answer	2	M1 for 8.25 : (15 – 8.25) o.e. For M1 e.g. allow 1 : 0.818 [0.8181 to 0.8182] or 1.22 : 1 [1.222] After M0, SC1 for 9 : 11 as final answer
2	(a) (i)	Image at (-3, 1), (-7, 7), (-3, 7)	2	SC1 for translation $\begin{pmatrix} -11 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -1 \end{pmatrix}$
	(ii)	Image at $(-4, -1)$, $(-4, -4)$, (-2, -4)	2	SC1 for enlargement factor 0.5 and correct orientation
	(b) (i)	Reflection, $y = 1$	2	In each part of (b) must be one transformation only – if more then lose all marks for that part. B1 B1 independent
	(ii)	Rotation, (3, 2), 180 o.e. or enlargement, (3, 2), (factor) – 1	3	B1 B1 B1 independent
	(iii)	Stretch, (factor) 0.5, Invariant line <i>y</i> -axis or $x = 0$	3	B1 B1 B1 independent – must be clear on invariant line
3	(a)	7.407 or 7.41	1	
	(b)	9	2	M1 for $1080 \div (12 \times 10)$ o.e.

				2222
	Page 3	Mark Scheme		Syllabus
		IGCSE – October/Novemb	per 2012	0444 230
	(c) (i)	6.36 to 6.37 www	3	M2 for $\sqrt[3]{\frac{1080}{\frac{4}{3}\pi}}$ o.e. or M1 for $\frac{1080}{\frac{4}{3}\pi}$ o.e. [257.7 to 258.7] Accept 4.18 to 4.19 for 4/3 π
	(ii)	508 to 510	2	M1 for $4 \times \pi \times (their (c)(i))^2$
	(d)	$\sqrt{2}$ or 1.41 [1.414] www	2	Allow over 1 or $\sqrt{2}$: 1 etc. M1 for $(R / r)^2 = 2$ o.e. or $[R^2 =] (2 \times their \mathbf{c(ii)})/4 \pi$ or $[R^2 =] 2 \times (their (\mathbf{c)(i)})^2$
4	(a)	$\frac{2}{20}$ o.e.	2	M1 for $\frac{2}{5} \times \frac{1}{4}$
	(b)	$\frac{6}{20}$ o.e.	3	M2 for $2 \times \frac{1}{5} \times \frac{1}{4} + 2 \times \frac{2}{5} \times \frac{1}{4}$ o.e. M1 for pairs 1, 4 and 2, 3 clearly identified and no other incorrect pairings or for one appropriate product isw
	(c)	$\frac{14}{20}$ o.e.	1FT	FT 1 – <i>their</i> (b) or recovery to correct ans
5	(a)	5, -1	2	B1 B1
	(b)	12 points plotted	P3FT	P2FT for 10 or 11, P1FT for 8 or 9
		Smooth curve through at least 12 points	C1	In absence of plot[s], allow curve to imply plot[s]. No ruled sections Not touching <i>y</i> -axis
		Two separate branches	B1	
	(c) (i)	0.55 to 0.65	1	
	(ii)	0.65 to 0.75	2	M1 for $y = 3x$ drawn ruled to cross curve
	(d)	$\frac{1}{3}$	2	Accept 0.333[3] or $0.\dot{3}$ M1 for $\frac{2}{x^2} - 3x = 3x$ or better
		Pulod line through $(1, 5)$ and $(2, 0)$	1	

Page 4	Mark Scheme		Syllabus Syllabus
	IGCSE – October/Novem	IGCSE – October/November 2012	
(ii)	y = -3.5x + 1.5 o.e. final answer	3	B2 for $y = kx + 1.5 [k \neq 0]$ y = -3.5x + d o.e. B1 for gradient = - 3.5 o.e. accontent of the second sec
(iii)	Tangent	1	
(a)	0.57	B4	Condone use of other variables M1 for $2w+3l = 3.6$ o.e. and M1 for $l = w + 0.25$ o.e. A1 for correct $aw = b$ or $cl = d$ or M2 for $2w+3(w+0.25)=3.6$ o.e. or $2(l-0.25)+3l = 3.6$ o.e. or M1 for $w + 0.25$ or $l - 0.25$ seen A1 for $2w+3w=3.6-0.75$ or better or $2l+3l = 3.6+0.5$ or better l = 0.82 implies M2A1 trial & error scores B4 or zero accept answer 57 if written 57 cents after M0, SC3 if answer 57
(b) (i)	$\frac{5}{x} + \frac{6}{x+2} = 1 \text{o.e.}$ 5(x+2)+6x = x(x+2) o.e.	M2 A1	e.g. $\left(1-\frac{5}{x}\right)(x+2)=6$ M1 for $\frac{5}{x}$ seen or $\frac{6}{x+2}$ seen or $xy = 5$ and $(x+2)Y = 6$ o.e. or $xy = 5$ and $(x+2)(1-y) = 6$ o.e. e.g. $(x-5)(x+2) = 6x$ Allow $5x + 10 + 6x = x^2 + 2x$ and allow all over correct denominator but must see this line
	5x + 10 + 6x = x2 + 2x 0 = x2 - 9x - 10	E1	One correctly expanded line seen No errors or omissions
(ii)	(x-10)(x+1)	2	SC1 for $(x+a)(x+b)$ where $ab = -10$ or $a + b = -9$
(iii)	21	2FT	FT a positive x into $2(x + \frac{5}{x})$ M1 for 0.5 seen or 5 / <i>their</i> positive root

 Page 5	Mark Scheme		Syllabus Syllabus	
	IGCSE – October/November	IGCSE – October/November 2012		
(c) (i)	$(2x+3)^2 = (x+3)^2 + 5^2$ o.e.	M1	ambrid	
	$4x^{2} + 6x + 6x + 9 = x^{2} + 3x + 3x + 9 + 25$	B 1	for $4x^2 + 6x + 6x + 9$ or $4x^2 + 12x$	
	o.e. $3x^2 + 6x - 25 = 0$	B1 E1	for $x^2 + 3x + 3x + 9$ or $x^2 + 6x + 9$ No errors or omissions	
(ii)	$\frac{-6\pm\sqrt{6^2-4(3)(-25)}}{2}$	2	B1 for $\sqrt{6^2 - 4(3)(-25)}$ or better seen	
	2(3)		If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ o.e.	
			B1 for $p = -6$ and $r = 2(3)$ or better	
	- 4.06, 2.06 final answer	B1B1	B1 B1	
			After B0 B0 SC1 for -4.1 and 2.1	
			or – 4.055 and 2.055	
			or –4.06 and 2.06 seen	
(iii)	12.63 to 12.65 or 12.6 or 12.7	2FT	FT (a positive $x + 3$) × 2.5	
			SC1 for $0.5 \times their$ positive value $\times 5$ written	
	120			
(a)	$\sin \left[\right] = \frac{130}{0.5 \times 16 \times 25}$ o.e.	M2	M1 for $0.5 \times 16 \times 25 \times \sin [] = 130$	
	0.5×10×25		o.e. but if 40.54 reached from implicit	
			method then M2	
	40.54 = 40.5	E1	Must see 40.54 and conclusion Use of 40.5 alone in implicit expression	
			scores M1.	
(b)	16.51 to 16.53 or 16.5 www 4	4	M2 for $16^2 + 25^2 - 2 \times 16 \times 25 \times \cos^2 6$	
			(40.5) o.e.	
			$\begin{bmatrix} a 100 & 40.5 & 16^2 + 25^2 - AC^2 \end{bmatrix}$	
			$(\mathbf{M1} \text{ for } \cos 40.5 = \frac{2 \times 16 \times 25}{2 \times 16 \times 25}$	
			[allow 40.54] A1 for 272.6 to 273.0 (which implies	
			M2)	
(c)	10.39 to 10.4[0]	2	M1 for $0.5 \times 25 \times \text{distance} = 130$	
			or $\frac{dist}{dist} = \sin[40.5]$ o.e. [allow 40.54]	
			16	
(a) (i)	4	1		
	2	1		
(ii)	$4\cos(2x-60)$ o.e.	2	B1 for $4\cos(kx+c)$, $k \neq 0$	
			Or B1 for $\cos(2x-60)$ o.e.	
		•	D1 for a sum of all one last mains	
(b)	Correct sketch by eye	2	BI for correct snape but missing	

Page 6	Mark Scheme		Syllabus Syllabus
	IGCSE – October/Noven	IGCSE – October/November 2012	
(a)	24	3	M2 for 24 at <i>B</i> or 128 at <i>X</i> and or M1 for 28 at <i>D</i> or 128 at <i>X</i> allow on diagram
(b)	5 www	3	M2 for $360 - 22x = 2 \times 25x$ o.e. or better or $22x = 2(180 - 25x)$ o.e. or better or $11x + 25x = 180$ o.e. or better or M1 for P = 11x or reflex $O = 360 - 22x$ or reflex $O = 50x$ allow on diagram
(c)	6.32 to 6.34 www	5	B1 for <i>OLM</i> 90° (seen or implied) allow on diagram and M1 for <i>LM</i> = 8tan44 [7.7255] or <i>OM</i> = 8 ÷ cos44 [11.1213] and M1dep on previous M for 0.5 × 8 × <i>their LM</i> or 0.5 × 8 × (<i>their OM</i>) sin44 and M1 for $\frac{44}{360} \times \pi \times 8^2$ o.e. [24.5 to 24.6]
(a) (i)	72	1	
(ii)	68	1	
(iii)	8	1	
(iv)	164	2	M1 for 36 seen may be on graph
(b) (i)	11	1	
(ii)	35, 45, 55, 65, 75, 85 $(9 \times 35 + their 11 \times 45 + 16 \times 55 + 2)$ $(65 + 108 \times 75 + 28 \times 85)$ [13990] $\div 200 \text{ or their } \sum f$ (69.95 or 69.9 or 70[.0] cao	8 × M1 M1dep A1	At least 5 correct mid-values soi $\sum fx$ where x is in the correct interval allow one further slip Depend on second method must be from 13990 isw conversion to mins/secs & reference to classes SC2 for correct answer without working
(a)	$ \begin{array}{cccc} A & 1, & 13-2n \\ B & 36, & n^2 \\ C & 42, & n(n+1) \\ D & 729, 3^n \\ E & 687, & 3^n - n(n+1) \end{array} $	3 2 3 2 2FT	B1, B2 (M1 for $k - 2n$) o.e. B1, B1 B1, B2 (B1 for a quadratic in n) B1, B1 B1FT their D – their C , B1FT their D – their C only if both in terms of n

Page 7	Mark S	Scheme	Syllabus	No. Y
	IGCSE – Octobe	er/November 2012	0444	No.
(b) (i)	-187	1FT	FT if A is linear	and
(ii)	10100	1FT	FT if C is quadrat	tic
(c)	8	1FT		
(d)	58 939 cao	1		

IJ