WWW. Pals

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0581 MATHEMATICS

0581/41

Paper 41 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus
		IGCSE – May/June 2010	0581
Abbr	eviations		Cally
cao	correct answer	only	OH.
cso	correct solution	n only	St.
dep	dependent		200
ft	follow through	after error	-On
isw	ignore subsequ	ent working	
oe	or equivalent		
CC	Cmanial Casa		

Abbreviations

or equivalent Special Case oe SC

without wrong working www

Qu.	Answers	Mark	Part Marks
1 (a)	11:14	1	
(b)	50	2	M1 for $(220 + 280) \div 10$ o.e.
(c)	12	2	M1 for $21 \div (4+3) \times 4$ (or 3) o.e.
(d)	280	3	M1 for 0.35 × their 500 (175) M1 dependent × 1.60
(e)	240	2	M1 for dividing 264 by 1.1 oe
2 (a) (i)	4	1	
(ii)	5	1	
(iii)	4.75	3	M1 for $1 \times 2 + 1 \times 3 + 17 \times 4 + 12 \times 5 + 6 \times 6 + 3 \times 7$ condone one slip then M1 dependent result $(190) \div 40$
(b)	$\frac{190+3n}{40+n}$	2	SC1 for their $190 + 3n$
3 (a)	Triangle drawn with co-ords at (1, 4), (4, 2), (4, 4)	2	SC1 for 2 correct vertices or an enlargement sf $\frac{1}{2}$ with wrong centre
(b) (i)	$\begin{pmatrix} -8 & -8 & -2 \\ 4 & 8 & 8 \end{pmatrix}$	2	B1 each row
(ii)	Triangle drawn at (-8, 4), (-8, 8), (-2, 8) ft (i)	2ft	SC1 for 2 correct ft vertices. Can also be correct regardless of (i)
(iii)	Reflection cao $y - axis \text{ or } x = 0$ cao	2	B1 Independent of (i) or (ii) Extra transformations lose all marks B1 Independent of (i) or (ii)
(c) (i)	Translation		B1 Extra transformations lose all marks
	$\begin{pmatrix} -10 \\ -10 \end{pmatrix}$ o.e.	2	B1
(ii)	Rotation (0, 0) 90° clockwise oe	3	B1 Extra transformations lose all marks B1 Allow word origin for (0, 0) B1 Allow – 90° or 270° (anti-clockwise)
(d)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	2	B1 each column

		the transfer of the transfer o
Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2010	0581
	•	, C.

4				In (b) and (c) isw any cancelling or charto other forms, after correct answer seem. Penalty of – 1 for 2 sf decimals or percentages. Do not accept ratio or worded forms.
(a)	B and $\frac{2}{5}$, $\frac{1}{4}$ oe		1	Allow any reasonable explanation, e.g. 2 out of 5 greater than 1 out of 4.
	$\frac{1}{3}, \frac{3}{4}, \frac{2}{5}, \frac{3}{5}$		4	B1 B1 B1 B1
(ii)	$\frac{6}{12}$ oe cao	www 2	2	$\frac{1}{2}$, 0.5 etc M1 for $\frac{2}{3}$ × their $\frac{3}{4}$ i.e. product of correct branches on their tree
(iii)	$\frac{42}{60}$ oe cao	www2	2	$\frac{7}{10}$, 0.7 etc M1 for their (ii) + their $\frac{1}{3}$ × their $\frac{3}{5}$ from their
(c)	$\frac{2}{60}$ oe cao	www2	2	tree $\frac{1}{30}, 0.0333(3) \text{ etc}$ $\mathbf{M1} \text{ for } \left(\frac{2}{3} \times \frac{1}{4} \times 0\right) + \frac{1}{3} \times \frac{2}{5} \times \frac{1}{4}$
5 (a)	200.5 to 201	www 2	2	M1 for $0.5 \times 24 \times 26 \sin 40$ oe
(b)	17.2 (0)	www 4	4	M2 for $26^2 + 24^2 - 2 \times 26 \times 24 \cos 40$ or M1 for $\cos 40 = \frac{26^2 + 24^2 - BD^2}{2 \times 24 \times 26}$ A2 or A1 for 295.976
(c)	12.8 (12.77)	www 4	4	B1 for Angle $C = 110$ soi accept on diagram M2 for $(BC) = \frac{24 \sin 30}{\sin 110}$ oe or M1 $\frac{\sin 110}{24} = \frac{\sin 30}{BC}$ oe i.e. a correct implicit statement soi A1
(d)	8.208 to 8.230	www 2	2	M1 for their (c) × sin40 oe

		my.
Page 4	Mark Scheme: Teachers' version	Syllabus er
	IGCSE – May/June 2010	0581

			7)
6 (a)	32.5 cao www4	4	M1 for mid-values seen M1 for use of Σfx with x 's anywhere in each interval $(10 \times 15 + 30 \times 30 + 20 \times 45)$ M1 ÷ 60 dependent on second M1
(b)	Histogram drawn	3	B1 Bars correct positions and widths – no gaps B2 Heights of bars 1, 1.5 and 2 (B1 for any two correct or for heights in the ratio 2:3:4)
7 (a)	4.53 or 4.526 – 4.530	3	SC2 for figs 453 or 4526 – 4530 If SC0, M1 for $\pi \times (\text{figs } 31)^2 \times 15$
(b)	3.62 to 3.624 ft	2ft	M1 for their (a) × figs 8 oe
(c) (i)	$360 - 2 \times 90 - 60$ oe	2	E2 The 90's and the 60 must be clearly justified. Accept in diagram. SC1 for 60 or two 90's soi in correct positions oe e.g 360 ÷ 3 scores 0
(ii)	0.649 (0.6492 to 0.6493)	2	M1 for $\pi \times \text{figs } 62 \div 3$
(iii)	7.53 (7.527 or 7.528)	3	M1 for their (ii) × 3 M1 (indep) for 18 × figs 31 This M is spoiled by extra lengths.
(iv)	112.9 to 113 ft	1 ft	ft their (iii) × 15
8 (a)	0.25, 8, 16	3	B1 B1 B1
(b)	-5,4	2	B1 B1
(c) (i)	7 points plotted ft Curve through all 7 points exponential shape	P2ft C1ft	P1 for 5 or 6 points ft ft only if exponential shape
(ii)	6 points plotted ft Curve through all 6 points parabola shape	P2ft C1ft	P1 for 5 points ft ft only if parabola shape
(d) (i)	3.2 to 3.4	1	
(ii)	0.3 to 0.4 and 2	2	B1 B1
(iii)	3.1 to 3.4	1	
9 (a) (i)	-2.5 oe	2	M1 for $5(w+1) = 3w$
(ii)	-3 or 1	2	B1 B1 (If 0, SC1 for $y + 1 = \pm 2$)
(iii)	9.5 oe	В3	M2 for $5x + 5 - 3x + 6 = 2 \times 15$ Condone one slip (sign or numerical) on left hand side or M1 for $\frac{5(x+1)}{15} - \frac{3(x-2)}{15}$ or better,
			condoning one sign or numerical slip.

Page 5	Mark Scheme: Teachers' version	Syllabus	
_	IGCSE – May/June 2010	0581	

			73.
(b) (i)	(u-10)(u+1)	2	SC1 for $(u+a)(u+b)$ where $ab = -10$ a+b=-9 Only ft B2 or SC1 in (i) but can recover to correct answer only if new working or if (i) not
(ii)	-1, 10	1 ft	Only ft B2 or SC1 in (i) but can recover to correct answer only if new working or if (i) not attempted
(c) (i)	$\frac{(x+1)(x+2)}{2} = x^2 \qquad \text{oe}$ $((x+1)(x+2) =)x^2 + x + 2x + 2$ $x^2 + x + 2x + 2 = 2x^2$	M1	
	$((x+1)(x+2) =)x^2 + x + 2x + 2$	B1	Allow $3x$ for $x + 2x$
	$x^2 + x + 2x + 2 = 2x^2$		
	$x^2 - 3x - 2 = 0$	E1	Established without any omissions or errors
(ii)	$x^{2} - 3x - 2 = 0$ $\frac{-(-3) \pm \sqrt{(-3)^{2} - 4(1)(-2)}}{2(1)}$	2	B1 for $\sqrt{(-3)^2 - 4(1)(-2)}$ or better seen anywhere.
			If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ then B1 for
			-(-3) and 2(1) or better
			Brackets and full line may be implied later
	-0.56, 3.56	2	B1 B1 SC1 for -0.6 or -0.562 to -0.561 and 3.6 or 3.561 to 3.562
(iii)	12.7 or 12.67 to 12.69 ft	1 ft	ft their positive x squared
10 (a)	$20x + 100y \le 1200$	1	
(b)(i)	$x + y \ge 40$	1	
(ii)	$y \ge 2$	1	
(c)	x + y = 40 cao	L1	Each line ruled and long enough to enclose
	y = 2 cao	L1	required region. If L0 , SC1 if freehand but otherwise accurate and enclose region
	Required region only region left not shaded or otherwise clearly indicated cao	R2	SC1 if one boundary error – see diagrams
(d)	5 cao	1	
(e)	50 cao, 2 cao 270 ft	2 1 ft	B1 B1 ft $5 \times \text{their } x + 10 \times \text{their } y$
11 (a)	Reasonable diagram, 25, 13, 62	4	B1 B1 B1 B1 diagram may be freehand
(b)	64, 19, 146	3	B1 B1 B1
(c)	n^2 oe	_	B1
2 80 280	2n+3 oe	2	B1
(d)(i)	2	1	G 101011 I
(ii)	20202 ft	1 ft	ft 10101 × their <i>k</i>