UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	age 2	Mark Scheme: Teachers' version	Syllabus
		IGCSE – May/June 2012	0581
Abbrev	viations		
ao	correct answer	only	
cso	correct solution	n only	
dep	dependent		
ft	follow through	after error	
isw	ignore subsequ	ent working	
be	or equivalent		
SC	Special Case		
WWW	without wrong	working	
art	anything round	ling to	
soi	seen or implied		

Qu.		Answers	Mark	Part Marks
1 (a)		1134	3	M2 for $\frac{504}{12} \times (12 + 7 + 8)$ soi by answer of 1130 or B1 for 27 or 42 or 294 or 336 seen
(b)	(i)	468.72	3	M2 for $\frac{93}{100} \times 504$ oe soi by 468.7 or 469 or M1 for $\frac{7}{100} \times 504$ (implied by 35.28)
	(ii)	84	3	M2 for $\frac{64.68}{77} \times 100$ or M1 for $(100 - 23)\% = 64.68$
(c)		262.19 cao	3	M2 for 250×1.016^3 oe implied by answer 262.2 or better
(d)		12.5%	3	or M1 for 250×1.016^n oe $n > 2$ seen M2 for $\frac{324 - 288}{288} \times 100$ or M1 for $\frac{324}{288} \times 100 (112.5)$ or $\frac{36}{288} (0.125)$
2 (a)		10.9 or 10.92 www 4	4	M2 for $4^2 + 9^2 - 2 \times 4 \times 9 \times \cos 108$
				If M0, M1 for correct implicit statement
				A1 for 119.249(which can be 3 www)
(b)	(i)	5.16 or 5.162 www 3	3	M2 for $9 \times \cos 55$ oe in correct triangle
				If M0, B1 for 55 or 35 in correct position soi
	(ii)	(0)53	B2	SC1 for answer 233

				sion Syllabus 0581 B2 for 4 correct, B1 for 3 correct B2 for 7 or 8 points correct B1 for 5 or 6 points correct correct cubic shape through 8 or more points from - 2 to 2			
	Page 3 Mark Scheme: Teache			sion Syllabus			
	IGCSE – May/Jun		ne 2012	0581 732			
3	(a)	1 0.98(4) 0 -0.98(4) -1	B3	B2 for 4 correct, B1 for 3 correct			
	(b)	9 points plotted	P3ft	B2 for 7 or 8 points correct B1 for 5 or 6 points correct			
		smooth curve	C1	correct cubic shape through 8 or more points from – 2 to 2			
	(c) (i)	y = 0.8 drawn	B1	Accept good freehand To make the three possible intersections (otherwise the line must be from -2 to 2)			
	(ii)	-1.1 to -1.2, -0.4 to -0. 5, 1.55 to 1.65	1, 1, 1				
	(d)	correct tangent drawn at $x = -1.5$ 4 to 5.5	T1 B2	Allow slight daylight dep on T1 M1 for evidence rise/run with correct scales dep on T1			
4	(a)	90	B1				
	(b)	$\tan(ACB) = 7 \div 10$ oe 34.9(9)	M1 A1	Any longer method must reach equivalent stage			
	(c)	same segment	B1	Allow same arc oe			
	(d) (i)	11.9 or 11.8(9) www 3	3	M2 for $\frac{7 \times \sin 77}{\sin 35}$			
				or M1 for implicit form			
	(ii)	38.6 (38.58 to 38.62) www 2	2	M1 for $0.5 \times 7 \times their (d)(i) \times sin(180 - 77 - 35)$ oe			
				Allow 68.00 to 68.01 for 68			
	(e)	8.69 or 8.7(0) or 8.685 to 8.700 cao www 3	3	M2 for $12.3 \times \left(\frac{10}{their \ 11.9}\right)^2$			
				or M1 for $\left(\frac{10}{their \ 11.9}\right)^2$ or reciprocal seen			
5	(a) (i)	2.8 cao	1	accept 2 (h) 48, not 2.48			
	(ii)	3.8 cao	1	accept 3 (h) 48 not 3.48			
	(iii)	1.8 cao	1ft	ft their (a)(ii) -2 accept 1 (h) 48 and 1.48			
	(b)	6	1				
	(c) (i)	9, 4, 4	2	B1 for 2 correct			
_							

				4342
Page	; 4	Mark Scheme: Teache	rsion Syllabus	
		IGCSE – May/Jun	e 2012	2 0581 230
(ii)	1 2.5	3.5 4.5 5.5 7	M1	At least 5 correct mid-values seen
		$1 + 25 \times 2.5 + 18 \times 3.5 + 0 \times 4.5 + their 4 \times 5.5 + their 4 \times 5.5$	M1	The second seco
	÷ 80		M1	Dependent on second method mark
	2.95 ca	10	A1	Allow www 4
(d)	horizor	suitably numbered or ntal axis suitably numbered and cale stated	1	e.g. 4 cm ² = 10
	6 colur	mns with correct relative widths	1	no gaps, but condone reasonable freehand
	heights	s: 10 25, 18, their 9, their 4 their 4 ÷ 2	1 1 1	if vertical axis not labelled use correct relative heights
6 (a) (i)	(4x-7)	7)(2x-1) = 1	M1	or $(4x-7)(2x-1)-1 = 0$ only
	$8x^2 - 1$	14x - 4x + 7	B 1	allow $-18x$ and/or $+6=0$ or $=-6$
	$4x^2 - 9$	9x + 3 = 0	E1	at least one more line e.g. $8x^2 - 18x + 6 = 0$ with no errors or omissions seen
(ii)	(<i>x</i> =) -	$\frac{-(-9) \pm \sqrt{(-9)^2 - 4(4)(3)}}{2 \times 4}$	B2	B1 for $\sqrt{(-9)^2 - 4(4)(3)}$ or better seen $(\sqrt{33})$ B1 for $p = -(-9)$ and $r = 2 \times 4$ or better as long as in the form $\frac{p + or - \sqrt{q}}{r}$
	(<i>x</i> =)	0.41, 1.84 cao	B1,B1	After B0B0, SC1 for 0.4 or 0.406(929) and 1.8 or $1.843(070)$
(iii)	0.36 o	or 0.3720 to 0.3724 or 0.37	B1ft	ft their value to give positive $(4x - 7)$
(b) (i)	(x-4)	(x + 4)	B 1	
(ii)	(2x+3) oe	3)(x+4) + (x+40) = 2(x2 - 16)	M2	fractions cleared or could all still be over $(x^2 - 16)$ or $(2 + 2)(x^2 - 16) + (x + 40)(x - 4) + 2(x - 4)(x^2 - 16)$
		8x + 3x + 12 or $3x^2 - 32x - 48$	B1	$(2x+3)(x^2-16) + (x+40)(x-4) = 2(x-4)(x^2-16)$ Condone sign slips
	<i>x</i> = -7	7 www 4	A1	

Page 5 Mark Scheme: Teache IGCSE – May/Jun			Syllabus 0581		
7	In any 0 out o	y part of part (a) all marks are in of 3	ndepend	lent but men	tion of a second transform
(a) (i)	Rotation (centre/about) origin (O) (0,0) 180° Enlargement (centre/about) (0,-3) SF - 3		1 1 1	accept R SC3 for all	Syllabus 0581 tion of a second transform
(ii)			1 1 1	accept E	
(iii)	Enlarg (centre SF $\frac{1}{3}$	ement e/about) (0, 6)	1 1 1	accept E	
(b) (i)	image	at (-4, -2) (-2, -2) and (-1, 0)	2	SC1 for trai	nslation by $\begin{pmatrix} -4\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ -5 \end{pmatrix}$, $k \neq 0$
(ii)	image	at (-2, 3) (-4, 3) and (-5, 5)	2	SC1 for ref	lection in $y = -1$
(c) (i)	image	at (0, 3) (4, 3) and (6, 5)	2	SC1 for stree ie at (0,6) (etch sf 2 with <i>x</i> -axis invariant 2,6) (3,10)
(ii)	$ \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} $) ft	2 ft		the factor only rect left hand column ft or $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ ft
8 (a)	2 4 6	8	1		
(b)	3		1		
(c) (i)	(x-4)	(x-9)	2		her $(x+a)(x+b)$ where or $a+b=-13$
(ii)	4 9		B1 ft	ft or can rec	cover
(d)	2				
	<i>E</i> 6	$\begin{array}{c} 8 \\ 2 \\ 4 \\ 9 \\ G \\ \end{array} \begin{array}{c} 7 \\ 1 \\ 3 \\ 9 \\ G \\ \end{array}$	2		all 9 numbers on diagram and no extra
(e) (i)	Ø or {	} cao	1		
(ii)	∉ cao		1		
(iii)	∪cao		1		

Page	e 6	Mark Scheme: Teach IGCSE – May/Ju		sion	Syllabus 0581	Papac
) (a) (i)	14		1			ambrid
(ii)	13 - 2x		2	M1 for $7 - 2(x - x)$	-3)	W. Papacambridge
(iii)	$25x^2 -$	8 final answer	1			
(b)	$\frac{7-x}{2}$ of	0e	2	M1 for $2x = 7 - 0$ or $x = 7 - 2y$, i.e one step from	2y = 7 - x oe	0e
(c)	$9x^2 + 3$	0x + 17	3	M1 for $(3x + 5)$ B1 for $9x^2 + 30$		
(d)	7 cao		3	M2 for $3(3x + 5)$ or B1 for $3(3x + 5)$		etter
(e)	$x < -\frac{3}{8}$	oe cao	3	M1 for $2(3x + 5)$ B1 for $8x * - 3$ Do not accept -	or $-8x * 3$	
.0 (a)	2030 01	2040 or 2034 to 2036. ()	2	$(V=)\frac{1}{3} \times \pi \times 9^2$	× 24	
				Accept 648π for	[•] 2 marks if fina	l answer
(b)	(upper	radius =) 3	B1	accept $9 \times \frac{8}{24}$	be	
	(vol cut	t off =) $\frac{1}{3} \times \pi \times their 3^2 \times 8$	M1	(= 75.36 to 75.4	1) their <i>r</i> must	be less than 9
	<i>their</i> (a) – their 75.39	M1 dep	[alternate method		vols 1 : 27
	1958 to	1964.()	E1	624π implies B 1 must see a figur		point if 1960
(c)	1960 =	$5 \times \pi \times r^2 \times 15$ soi	M1			
	$r^2 = 19$	$60 \div \pi \div 15 \div 5$	M1	implied by 8.31	8	
	\sqrt{their}	8.318	M1	dep on M1 M1	$0.0^2 \times 15 = 1000$	4- 1092
	2.88 to	2.89	E1	SC2 for $5 \times \pi \times 2$	2.9 ⁻ ×15 = 1980	to 1982