CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2012 series

0581 MATHEMATICS

0581/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

P	age 2	Ν	lark Scheme	Syllabu	is ·
		IGCSE – O	ctober/November 2012	0581	
bbre	viations				4747 P.
io	correct answer	only			
so	correct solutio	n only			
dep	dependent	-			
ft	follow through	after error			
isw	ignore subsequ				
oe	or equivalent	C			
SC	Special Case				
www	without wrong	working			
art	anything round				
soi	seen or implie				

Qu.	Answers	Mark	Part Marks
1	(a) (i) 5	2	M1 for $\frac{3 \times 15}{(5+3+1)}$
	(ii) 108	2	M1 for $60 \times \frac{9}{5}$ oe
	(b) Correct conversion of money $J \times 0.718$ or $A \div 0.718$	M1	Correct conversion of money soi by 146.83[1] rounded or truncated to 3sf or 134.26[1] rounded or truncated to 3 sf if done 1 st
	Correct equalising of weights e.g. $J \times \frac{2[0]}{3[0]} \qquad \text{or } A \times \frac{3[0]}{2[0]}$ $\text{or } J \div 3 \text{ and } A \div 2 \text{ or } J \div 30 \text{ and}$ $A \div 20$	M1	Correct equalising of weights or money Accept other methods that give a pair of comparable values for method and accuracy marks This mark can be implied by values seen correct to 3 sf or better
	97 to 98 or 201[.39] and Ann <u>48.9[4]</u> and 48.2[0] and Ann or 68[.16] to 68.[2] and <u>67[.13]</u> and Ann <u>4.88 to 4.9</u> and 4.82 and Ann or 6.8[1] to 6.82 and <u>6.7[1]</u> and Ann WWY	A2 nd	The underlined values imply M1 for the money conversion Or A1 for 97 to 98 or 201[.39] or a correct pair of values with wrong/no conclusion
	(c) 302 Final answer	3	M1 for 60 × 60 × 4 soi by 14400 or figs 6048 or figs 3024 and M1 for ÷ (1000 × 20) soi Answer 302.4 implies M2
	(d) 13.6[0]	3	M2 for $\frac{15.3[0]}{1.125}$ oe or M1 for 15.3[0] associated with 112.5%
	(e) 12	1	

Page 3	Mark Scher	ne		Syllabus
	IGCSE – October/Nov		012	0581 %
(a) (i)	$[\cos A=]\frac{32^2+64^2-43^2}{2\times32\times64}$	M2		Syllabus 0581 0590 0
	37.00[]	A2	A1 for $\frac{32}{40}$	$\frac{271}{096}$ or 0.798 to 0.799
(ii)	516 or 616.2 to 616.4	2	M1 for ¹ / ₂	$\times 32 \times 64 \times \sin 37$ oe
48.49	$4DC = \frac{64\sin 55}{70}$ soi by rounded or truncated -(73.41 to 73.42) $x - 804 = 0$	M2	M1 for co cosine rul	prrect implicit version of sine rule x le with x
or 64	$\frac{h(125 - their 48.5)}{\sin 55}$ ² + 70 ² - 2 × 64 × 70cos(125 - 48.5)	M2		nplicit sine rule or cosine rule e error in quadratic solution
or so equat	lving their 3 term quadratic ion		Ignore neg	gative solutions
22	8 or 228.0 to 228.1 www	A2	A1 for 83	.0 to 83.1
(a) (i)	2(2x+1)(x-5) final answer	3	and B1 fo or SC2 fo correct ter or SC1 fo	$2x^{2}-9x-5)$ or $(2x + 1) (x - 5)$ or expansion of brackets gives 3 rms e.g. $(2x + 1) (2x - 10)$ or $(4x + 2)(x - 5)$ or expansion of brackets gives 2 rms e.g. $(2x - 1)(2x + 10)$ or $(4x - 2)(x - 4)$
(ii)	-1/20e , 5	1ft	Correct of	r ft their 2 brackets
(b) []	$\frac{7 \pm \sqrt{([-]7)^2 - 4(2)(-10)}}{2(2)}$	B2	B1 for $$	$([-]7)^2 - 4(2)(-10) = \sqrt{129}$
				$\frac{p+\sqrt{q}}{r} \text{ or } \frac{p-\sqrt{q}}{r},$ - 7 and 2(2) or better
-1.09	0, 4.59 final answers	B1B1		1 for –1.1 and 4.6 as final answers and 4.589 as final answers

Page 4		Ļ	Mark Schen	ne		Syllabus	r
	U		IGCSE – October/Nov	ember 2	012	0581 23	
	(c)		$\frac{-10}{-1)(x-2)}$ or $\frac{-10}{3x^2 - 7x + 2}$ nal answer	3	Allow reco and B1 for	Syllabus 0581 (x-2) - 2(3x-1) or better. overy after missing bracket[st (3x-1)(x-2) as common for seen (may be as two fract	anne a]
	(a)	(i)	148	2		gent/radius = 90° seen.	tions)
		(ii)	74	1ft		(i) ÷ 2 dep on (a)(i) < 180	
		(iii)	21	2		0 – 90 – 143 – 32 – <i>their</i> (ii) quadrilateral <i>AOCD</i>	00
		(iv)	20.9 or 20.92	3		an 74 oe or explicit sine rule implicit version	2
	(b)	(i)	51	2	M1 for <i>AB</i>	$3C = 90^{\circ}$. May be on diagram	m.
		(ii)	56	2		+ 17 or 180 – (73 + <i>their</i> 51 180 – (39 + 17)	.)
		(iii)	<u>Angle</u> at <u>centre twice</u> oe angle at <u>circumference</u>	1			
		(iv)	22	1			
		(v)	68.3 or 68.27 to 68.29	3	Allow $\frac{326}{15}$	$\frac{6}{\pi}$ as final answer	
					M2 for $\frac{36}{36}$	$\frac{50-34}{360} \times 2\pi \times 12$	
					or $2\pi \times 12$	$-\frac{34}{360}\times 2\pi\times 12$	
						$+\frac{180-34}{360}\times 2\pi\times 12$	
					or M1 for	use of $\frac{\theta}{360} \times 2\pi \times 12$	
					for $\theta \neq mu$	ltiples of 90°	

	Page 5	Mark Schen IGCSE – October/Nov		Syllabus 70 r 2012 0581
	(a) 20.	50, 100, 140, 180, 220	M1	At least 5 correct mid - values soi
5	(6 × 140	$20 + 10 \times 60 + 28 \times 100 + 76 \times + 22 \times 180 + 16 \times 220)$ 1640)	M1	Syllabusr20120581At least 5 correct mid - values soi Σ fm where m is in the correct interval, a either end of interval as mallow one further slip
		÷158 or $\sum f$	M1	Depend on second method
		137 or 136.9 to 137.0	A1	SC2 for 137 or better ww
	(b) (i)	16, 126	1, 1	
	(ii)	rectangular bar of height 0.2 rectangular bar of height 1.05	1ft 1ft	Strict ft from <i>their</i> 16 Strict ft from <i>their</i> 126
		correct widths of 80 and 120 with no gaps	1	
	(c) 135		3	M2 for $\frac{15 \times 136 + 3 \times 130}{15 + 3}$
				or M1 for 15×136 and 3×130 [2040] and [390]
5	(a) 5.83	or 5.830 to 5.831	2	Allow $\sqrt{34}$ as final answer M1 for $(3^2 + ([-]5)^2)$
	(b) (i)	Vector drawn from P to Q at (14, 3)	1	Must have arrow in correct direction
	(ii)	Points at (8, 11) and (13, 14)	1, 1	SC1 for points at (8, 5) and (3, 2)
	(c) 3a -	- 2 b	2	M1 for $\mathbf{a} - 3\mathbf{b} + 2\mathbf{a} + \mathbf{b}$ or $\overrightarrow{CD} + \overrightarrow{DE}$ oe Allow mixtures of vector notation.
	(d) (⁷		1	
	(-6)	1	
	(e) (i)	$\mathbf{b} - \mathbf{c}$ oe	1	Allow unsimplified

					422m
F	Page 6	<u>ა</u>	Mark Scher		Syllabus Syllabus
			IGCSE – October/Nov	vember 20	2012 0581 73
				т	627
		(ii)	MX = MB + BX	M1	Any order for the M marks For a correct route
			$\pm \frac{1}{4}$ or $\pm \frac{3}{4}$ used	M1	Sec
		³ / ₄ c	$c = \frac{1}{4}b \text{ or } \frac{1}{4}(3c - b) \text{ or } \frac{3c}{4} - \frac{b}{4}$	A2	Syllabus r 2012 0581 Any order for the M marks For a correct route A1 for $\frac{1}{2}$ b + $\frac{3}{4}$ (c - b) oe Any correct unsimplified After 0 scored SC2 for 2/3c -1/6b
7	(a)	(i)	$x \ge 5$		B1 for each correct inequality
			$y \leq 8$		Penalise the first occurrence only when strict inequalities used
			$x + y \le 14$		
			$y \ge \frac{1}{2}x$ oe	4	
		· · ·	x = 5 ruled y = 8 ruled x + y = 14 ruled $y = \frac{1}{2} x \text{ ruled}$ region indicated	1 1 1 1 1dep	Each line long enough to be boundary of region Check at intercepts Check at (10, 5) Dependent on 4 lines correct
	(b)	(i)	480	2	M1 for $20 \times x + 45 \times y$ where x and y are integers and (x, y) is in their quadrilateral
		(ii)	6, 8	1	In correct order
8	(a)	(i)	Tangent drawn at $x = 2.5$	1	reasonable tangent at correct point, no daylight, or chord, crossing <i>x</i> -axis between 1.7, 2.0 when extended if necessary
		(ii)	1.55 to 2.2	2dep	Dependent on correct tangent or close attempt at tangent at $x = 2.5$
					M1dep attempts <i>y</i> step / <i>x</i> step with correct scales
	(b)	1.42	2 to 1.45 and 2.8 to 2.82	1, 1	
	(c)	(i)	4.4, 2.5, 1.5	2	B1 for 2 correct values

P	Page 7		Mark Scheme IGCSE – October/November 2012			Syllabus Syllabus	
			IGCSE – October/Nov	vember 2	012	0581 232	_
		(ii)	6 correct points plotted	P2ft	P1ft for 4	4 or 5 correct plots	
			curve through all 6 points and correct shape	C1		Syllabus 0581 4 or 5 correct plots curve but last 3 points may be rule be of plot[s], allow curve to imply	0.0
		(iii)	0.75 to 0.9	1	Solutions	s may be in any order	
			1.6 to 1.7	1			
			2.6 to 2.7	1			
9	(a)	(i)	F 5 (11) 7 2 S	2		outside of circles in diagram ee of 5, 11, 7 correctly placed	
		(ii)	9	1ft	ft their 2	+ their 7	
		(iii)	14	1			
		(iv)	$\frac{11}{25}$	1ft	ft <i>their</i> 11	1 from diagram / 25	
		(v)	$\frac{42}{600}$ oe $=\frac{7}{100}$	2ft		rect cancelling	
						from diagram for numerator $\frac{heir7}{25} \times \frac{their(7-1)}{24}$	
						cored, SC1 for $\frac{their7}{25} \times \frac{their(7)}{25}$	

Page 8	Mark Scheme			Syllabus	
	IGCSE – October/Nov	ember 20	12	0581	Dar
(b) (i)	F 5 7 12 9 4				apa Cambridg
	F 5 4 G 7 12 S	4	zeros unambigu B1 for 4 in B1 for 12	ny correct diagram wi where needed an ously n correct place in correct place nd 7 in correct place	
	S = F = G 12 (7) 5 (4)	164	Corrector	6 from de indiana	
(ii)	28	1ft	Correct of	ft from <i>their</i> diagram	
(a) (i)	20	1			
(ii)	n-4 oe		Accept un	simplified	
	n+4 oe n+6 oe	2	B1 for two	o correct	
(iii)	(n-4)(n+4) - (n-6)(n+6)	M1	ft from the implied by 36) or n^2 -	eir algebraic expressions $y n^2 - 4n + 4n - 16 - (n^2 - 16 - (n^2 - 36))$	s can be $-6n+6n-$
	$n^2 - 4n + 4n - 16 - (n^2 - 6n + 6n - 36)$ or better		Must have	e a line of algebra	
	20	E1	With no e	rrors or omission of brac	ckets

Page 9	Mark Scheme IGCSE – October/November 2012			Syllabus 0581
	IGCSE – October/Nov	vember z	012	0381 780
	(n-5)(n+5) - (n-7)(n+7) isw or $n^2 - 25 - (n^2 - 49)$ isw or $n^2 - 25 - n^2 + 49$ isw	2	M1 for <i>n</i>	Syllabus 0581 - 5, n + 5, n - 7, n + 7 seen
	23) – (9 × 25) 253 – 225 [= 28]	E1	-	gebraic solution from + 6) - $(n - 8)(n + 8)$
(d) 4 <i>t</i> oe		1	_	nsimplified $(t-1)^2 - [n^2 - (t+1)^2]$
(e) $c = 2$	8 and $d = 30$ 52	1		