

MARK SCHEME for the May/June 2014 series

0581 MATHEMATICS

0581/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Р	age 2	Mark Scheme	Syllabus	
		IGCSE – May/June 2014	Syllabus 0581	
Abbre	viations		an	hidse con
cao	correct answer of	nly		12
lep	dependent			8
FT	follow through a	ıfter error		
isw	ignore subseque	nt working		10
be	or equivalent	-		
SC	Special Case			
nfww	not from wrong	working		
soi	seen or implied	6		

Question	Answers	Mark	Part Marks
1	1.37	2	B1 for 0.866 or $\frac{\sqrt{3}}{2}$ or 0.5 or $\frac{1}{2}$
2	$18\frac{1}{18}$	2	or B1 for 1.366 as final answer M1 for $\frac{2}{36} + \frac{36}{2}$ or better
3	30	2	M1 for $n - 8 = 22$ or $\frac{n}{2} = 15$
4 (a)	$\frac{5 \times 2}{22}$	1	
(b)	20 0.5 or $\frac{1}{2}$ cao	1	
5	$0.5^3 \ 0.5^2 \ 0.5 \ \sqrt[3]{0.5}$	2	B1 for 0.25, 0.125 and 0.793 seen or for three in correct order
6	1.6[0]	3	M1 for 800 × 1.5 and M1 for <i>their</i> 1200 ÷ 750
7	$4\pm\sqrt{y-6}$	3	M1 for <i>their</i> 6 moved correctly M1 for <i>their</i> $$ taken correctly M1 for <i>their</i> 4 moved correctly
8	$\frac{2}{x(x+1)}$	3	B1 for common denominator $x(x+1)$ seen M1 for $2(x+1) - 2x$ oe or better
9 (a)	119	3	M2 for $18 \times 6 + 11$ oe
(b)	[0] 1 [00] pm cao	1	or B1 for 18 or 11 or 108
10 (a)	(a+b)(x+y)	2	B1 for $a(x + y) + b(x + y)$ or $x(a + b) + y(a + b)$
(b)	(x-1)(3x-2)	2	B1 for $(x-1)(3(x-1)+1)$ If B0 then SC1 for $(x+a)(3x+b)$ where $3a+b=-5$ or $ab = 2$ or $3(x-1)(x-\frac{2}{3})$

						MAN AND
	Page	3	Mark Sche IGCSE – May/J			Syllabus 0581
					·	0301 30
11		113.9	0 to 114.0	4	M2 for [cos	Syllabus 0581 $=] \frac{8^{2} + 2^{2} - 9^{2}}{2 \times 8 \times 2}$ $= 8^{2} + 2^{2} - 2 \times 8 \times 2 \times \cos x$ $= 32 \times 117 \text{ or } $
						$x^{2} = 8^{2} + 2^{2} - 2 \times 8 \times 2 \times \cos x$ 13
						06 or -0.4063 to -0.4062 or $-\frac{13}{32}$
					11.72	5C2 101 54.5[1] 01 11.7 01 11.71 to
						ps =] $\frac{9^2 + 2^2 - 8^2}{2 \times 9 \times 2}$ or
					$[\cos =]\frac{9^2 + 1}{2\pi}$	$\frac{-8}{\times 9 \times 8}$
12	(a)	2 × 1	0^{10}	2	B1 for 20 ×	10 ⁹ or 20 000 000 000
((b)	1.25	$\times 10^{-1}$	2	B1 for 0.12:	5 oe
13	(a)	32		2	B1 for <i>AOC</i>	C = 116
	(b)	35		2	B1 for <i>CDA</i>	1 = 122
14		$y = -\frac{2}{2}$	$\frac{2}{3}x - 2$ oe	4	B1 for (9, 4) and)
					M2 for $y = x$	$kx - 2 \ (k \neq 0)$ or $y = \frac{2}{3}x + k \ (k \neq 0)$ or
					$\frac{2}{3}x-2$	5
					5	$y = \frac{2}{3}x$ or $\frac{2}{3}x + k$ $(k \neq 0)$
15		[0], 1	, 2, 3	4		ing the 5 correctly
					A1 for a corr	ecting <i>their</i> terms rect inequality for x eg $[0 \le] x < 4$
16	(a)	8		2	B1 for 2^{12} o	or 4096
	(b)	$2q^{\frac{3}{2}}$		3	B2 for $ka^{\frac{3}{2}}a$	as the answer
·	(-)	29		3	or	
					B1 for $2q^2$	and B1 for $q^{\frac{1}{2}}$ or nfww
17 ((a)	corre	ct working	2		liday = 5 or $360 \div 72 = 5$ 24 × 5 [= 120]
					or	
					M2 for $\frac{24}{72}$:	×360 [=120] oe
	(b)	6 nfw	/W	3		+120 + x + 2x = 360 oe entified as the required angle
18	(a)	corre	ct working	2	B2 for $\sqrt[3]{\frac{1}{8}} =$	$=\frac{1}{2}$ or $\sqrt[3]{8} = 2$ AND $\frac{10}{2} = 5$ oe and $\frac{4}{2} = 2$
					oe or	
					_	or $\sqrt[3]{8}$ or $8 = 2^3$ or $\frac{1}{8} = (\frac{1}{2})^3$

Page	4	Mark Scheme IGCSE – May/June 2014		Syllabus 4 0581
(b)	147 c	or 146.5 to 146.6	4	4 Syllabus 4 N3 for $\frac{7}{8} \times \frac{1}{3} \times \pi \times 4^2 \times 10$ or M1 for $\frac{1}{3} \times \pi \times 4^2 \times 10$ and M1 for $\frac{1}{3} \times \pi \times 2^2 \times 5$ and M1 for subtracting <i>their</i> volumes
19	1.38	or 1.39 or 1.384 to 1.389	7	M3 [Area $\Delta =$] $\frac{1}{2} \times 8 \cos 60 \times 8 \sin 60$ or M1 for [$AE =$] 8cos 60 and M1 for [ED] = 8sin 60 and M1 for Area sector $\frac{30}{360} \times \pi \times 8^2$ and M1 for Area rectangle = 8 × 8cos60 or 8 × 4 M1 for their 32 – (their 13.86 + their 16.76) or better