CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

www.PapaCambridge.com MARK SCHEME for the October/November 2014 series

0581 MATHEMATICS

0581/13 Paper 1 (Core), maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	2 Mark Scheme	Syı
	Cambridge IGCSE – October/November 2014	058
Abbrevi	ations	Carry
cao	correct answer only	Middle
dep	dependent	8
FT	follow through after error	, de
isw	ignore subsequent working	On
oe	or equivalent	
SC	Special Case	
nfww	not from wrong working	

Abbreviations

not from wrong working seen or implied nfww

soi

	Qu.	Answers	Mark	Part Marks
1		$\frac{13}{100}$ oe	1	
2	(a)	304 620	1	
	(b)	305 000	1FT	
3	(a)	2	1	
	(b)		1	
4		9.61	2	B1 for 9.609[1] or for their answer seen rounded to 2 d.p.
5	(a)	5	1	
	(b)	0.75 oe	1	
6	(a)	23.3	1	
	(b)	-15.5	1	
7	(a)	14	1	
	(b)	1296	1	
8	(a)	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	1	
	(b)	$\begin{pmatrix} -9\\18 \end{pmatrix}$	1	
9		$\frac{12-10}{15}$ or $\frac{12}{15} - \frac{10}{15}$ oe	M1	
		$\frac{2}{15}$ oe	A1	Answer must be a fraction

		my.
Page 3	Mark Scheme	Sy. per
	Cambridge IGCSE – October/November 2014	058

			1	6
10		$\frac{y+1}{6}$ oe	2	B1 for $y+1=6x$ or $\frac{y}{6} = x - \frac{1}{6}$ If B0 SC1 for $\frac{y-1}{6}$ or $\frac{y}{6} + 1$
11		$0.34 0.7^3 0.6^2 \sqrt{0.6}$	2	M1 for decimal conversion: $0.7[7]$ or 0.8 for $\sqrt{0.6}$ and 0.36 for 0.6^2 and 0.343 for 0.7^3 or B1 for three in the correct order
12		2.4×10 ⁸	2	B1 for 240 000 000 oe or B1 for $k \times 10^8$ or 2.4×10^k
13		30	2	M1 for $2x + 3x + 4x + 90 = 360$ oe
14		48	2	M1 for 52 ÷ 65 [× 60] oe implied by 0.8
15	(a)	1440	2	M1 for 18 × 10 × 8
	(b)	1700	1	
16	(a)	6j-k	2	B1 for $6j \pm ak$ or $bj - k$ (a and $b \neq 0$)
	(b)	5(p+2)	1	
17	(a)	12	1	
	(b)	60	1	
	(c)	Irrational number between 1 and 2	1	
18		9.5 or $\frac{19}{2}$	3	M2 for $2x = (8 \times 3) - 5$ or better oe or M1 for $2x + 5 = 8 \times 3$ or better
19	(a)	16 [kg]	1	
	(b)	Positive	1	
	(c) (i)	Ruled line of best fit	1	
	(ii)	Correct reading from ruled line	1FT	

		The state of the s
Page 4	Mark Scheme	Sy. per
	Cambridge IGCSE – October/November 2014	058
		5

20	(a)	Complete circle centre <i>E</i> radius 3 cm	1	and
	(b)	Correct ruled bisector with two pairs of correct arcs	2	B1 for correct bisector with no/wrong arcs
	(c)		1	dep on attempt at bisector of C and enclosed region
21	(a)	58	2	B1 for $ACB = 90^{\circ}$ soi as angle at C or M1 for $\tan \frac{8}{5}$
	(b)	9.43 to 9.44	2	M1 for $\tan \frac{\pi}{5}$ M1 for $[AB^2 =] 8^2 + 5^2$ or $\sin 32 = \frac{5}{AB}$ or $\cos 32 = \frac{8}{AB}$ oe
22	(a)	Trapezium	1	
	(b)	55°	1	
	(c)	21.4 or 19.55 to 23.37 nfww	3	B1 for $[AB =]$ 7.2, $[DC =]$ 4.7, and [height =] 3.6 seen and M1 for $0.5 \times their 3.6 \times their (4.7 + 7.2)$