CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2014 series

0581 MATHEMATICS

0581/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme
	Cambridge IGCSE – October/November 2014

MMMM. Da per 058 abaCambridge.com

Abbreviations

cao correct answer	only
--------------------	------

- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Qu.	Answers	Mark	Part Marks
1	$6 + 5 \times (10 - 8) = 16$	1	One pair of brackets only
2	20	1	
3	8	1	
4		1	
	ξ	1	
5	$v^3 - p$	2	M1 for $v^3 = p + r$
6	95.5 96.5 in correct places cao	2	B1 for 95.5 or 96.5 in correct place or for answers reversed
7 (a)	700	2	M1 for 2800 × 0.325
(b)	0.28	1	
8	$\frac{7}{6}$ oe	B1	
	their $\frac{7}{6} \times \frac{8}{7}$ oe	M1	Or M1 for $\frac{56}{\cancel{48}} \div \frac{42}{\cancel{48}}$ or equivalent division
	$\frac{4}{3}$ or $1\frac{1}{3}$ cao must see working	A1	with fractions with common denominator
	their $\frac{7}{6} \times \frac{8}{7}$ oe		· ·

Page 3	Mark Scheme Syn 74			
Ŭ	Cambridge IGCSE – Oc		ber 2014 058 %	
			Can	
)	9.13 or 9.127 to 9.1271	3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
			or $\sqrt[3]{\frac{figs440}{figs1000}}$ or $\sqrt[3]{\frac{figs1000}{figs440}}$	
10	97.2[0]	3	M1 for $C = kr^2$ A1 for $k = 30$	
			or M2 for $\frac{202.8}{2.6^2} = \frac{c}{1.8^2}$ oe	
11 (a)	$\begin{pmatrix} 6 & -4 \\ -8 & 38 \end{pmatrix}$	2	M1 for a 2 by 2 matrix with two correct elements SC1 for $\begin{pmatrix} 16 & -14 \\ -18 & 28 \end{pmatrix}$	
(b)	14	1		
12		3	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	
13	13.5 or 13.45[]	3	M2 for $\sqrt{\frac{2 \times 85}{\sin 110}}$ or M1 for $\frac{1}{2} \times a^2 \times \sin 110 = 85$ or $\frac{2 \times 85}{\sin 110}$ oe [180.9]	
14 (a)	2.47 or 2.474 to 2.4744	2	M1 for $\frac{56}{360} \times \pi \times 2.25^2$ oe	
(b)	0.742 or 0.7422 to 0.74232	1FT	FT <i>their</i> (a) \times 0.3[0] correctly evaluated.	

Ρ	age 4	Mark Scheme Sy. 7. per			
	· J ·	Cambridge IGCSE – Octo		mber 2014 058 %	
				Can	
15	(a)	$2 \times 3 \times 3 \times 5$	2	B1 for 2, 3, [3] and 5 identified as prime factors	
				Sy.oermber 2014058B1 for 2, 3, [3] and 5 identified as prime factorsor M1 for partial prime factorisation $6 \times 3 \times 5$ or $2 \times 9 \times 5$ or $3 \times 3 \times 10$ or $2 \times 3 \times 15$	
	(b)	630	2	M1 for $2 \times 3^2 \times 5 \times 7$ oe or for listing multiples of 90 and 105 at least up to 630	
16	(a)	108	1		
		Angle at centre is twice angle at circumference oe	1		
	(b) (i)	$-\frac{4}{3}$ oe	1		
	(ii)	-1	1		
17		[0.]08	4	M3 for $_{200} \times \left(1 + \frac{2}{100}\right)^2 - 200 - \frac{200 \times 2 \times 2}{100}$ oe or M1 for $_{200} \times \left(1 + \frac{2}{100}\right)^2$	
				and M1 for $\frac{200 \times (1 + \frac{1}{100})}{100}$ [+200]	
18	(a)	56	2	B1 for 16 soi or M1 for 72 – <i>their</i> 16	
	(b) (i)	63 or 63 to 63.5	1		
	(ii)	22 or 21.6 to 23 nfww	2	B1 for 49.8 to 50.2 seen or 71.8 to 72.8	
19	(a) (i)	c – a	1		
	(ii)	$-\frac{1}{3}$ a + $\frac{1}{3}$ c	3	M2 for $-a + \frac{1}{3}(c + 2a)$ oe	
				e.g. $-a + c + 2a - \frac{2}{3}(c + 2a)$	
				Or M1 for a correct route from A to X	
	(b)	\overrightarrow{AC} is a multiple of \overrightarrow{AX} and	1	oe	
		they share a common point [A]	1	oe	

Page 5	Mark Scheme Cambridge IGCSE – October	ber 2014 058 Page	
		////	Se la construction de la constru
20 (a)	102 to 106	2	B1 for 5.1 to 5.3 seen
(b)	Correct position of F with correct arcs for angle bisector	5	Sy. oer ber 2014 058 B1 for 5.1 to 5.3 seen B2 for Correct ruled angle bisector of A correct arcs or B1 for correct bisector with no/wrong are and B2 for Arc centre C, radius 8 cm or B1 for arc centre C with incorrect radius or correct conversion to 8cm and B1 for marking position of F on their bisector and 8cm from C or on their arc centre C
l (a)	$\frac{x+7}{(2x-1)(x+2)}$ Final answer	3	B1 for $3(x+2)-1(2x-1)$ seen or better B1 for denominator $(2x-1)(x+2)$ oe seen SC2 for final answer $\frac{x+5}{(2x-1)(x+2)}$
(b)	$\frac{2x}{x+7}$ Final answer	4	M1 for $4x(x - 4)$ or partial factorisation of numerator and M2 for $[2](x + 7)(x - 4)$ oe
			or M1 for $[2](x^2 + 3x - 28)$ or $[2](x + a)(x + b)$ where $ab = -28$ or a + b = 3 SC3 for answer $\frac{4x}{2x + 14}$ oe