CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

www.PapaCambridge.com MARK SCHEME for the October/November 2014 series

0581 MATHEMATICS

0581/43 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page	2 Mark Scheme	Sy. N. D. oer
	Cambridge IGCSE – October/November 2014	058
Abbrev	iations	Cambridge
cao	correct answer only	On:
dep	dependent	98
FΤ	follow through after error	26,0
isw	ignore subsequent working	-9
oe	or equivalent	
SC	Special Case	
nfww	not from wrong working	

Abbreviations

seen or implied soi

	Qu.	Answers	Mark	Part Marks
1	(a) (i)	5.37[1]	2	M1 for $[AD^2 =]2.6^2 + 4.7^2$ oe or better
	(ii)	54.1 or 54.11 to 54.12	3	M2 for tan $[BCD =] \frac{4.7}{(17-11-2.6)}$ oe
				or B1 for 3.4 seen
	(iii)	65.8	2	M1 for $\frac{11+17}{2} \times 4.7$ oe
	(b)	263.2 or 263	3FT	FT their (a)(iii) × 4 correctly evaluated
				M2 for <i>their</i> (a)(iii) $\times \left(\frac{9.4}{4.7}\right)^2$ oe
				or $(0.4)^2 (4.7)^2$
				M1 for [scale factor =] $\left(\frac{9.4}{4.7}\right)^2$ or $\left(\frac{4.7}{9.4}\right)^2$ soi
2	(a) (i)	$\frac{920}{8} \times 7 \ [=805] \text{ oe}$	1	$\frac{2990}{26} \times 7 = 805$
	(ii)	30.8 or 30.76 to 30.77	2	M1 for $\frac{8}{(11+8+7)}$ [× 100]
	(b)	1211 final answer	5	B4 for 13 926.5[0] [area A total sales]
				or B3 for 11 040 [area B] and 10 867.50 [area C] or 21 907.5 [area B + area C]
				or B2 for 11 040 [area B] or 10 867.50 [area C]
				or M1 for 736 [B tickets] and M1 for 483 [C tickets]
				After 0 scored SC2 for answer of 1196
				or SC1 for 13754 (A total sales)

		my.
Page 3	Mark Scheme	Syl. Sper
	Cambridge IGCSE – October/November 2014	058

			1	6
	(c)	37720	3	M2 for $\frac{35834}{0.95}$ oe or M1 for 35834 associated with 95[%]
				or M1 for 35834 associated with 95[%]
3	(a) (i)	52 Angles in same segment	1 1dep	Accept same arc, same side of same chord
	(ii)	104 Angle at centre is twice angle at circumference	1 1	Accept double, 2 × but not middle, edge
	(iii)	Angle between tangent and radius = 90°	1 1	Accept right angle, perpendicular
	(b) (i)	7.65 to 7.651	4	M2 for $8.92 + 72 - 2 \times 8.9 \times 7 \times \cos 56$ or M1 for correct implicit formula
				and A1 for 58.5 to 58.6
	(ii)	49.3 or 49.33 to 49.34	3	M2 for $[\sin BEC =] \frac{7\sin 56}{their(\mathbf{b})(\mathbf{i})}$ oe or M1 for $\frac{\sin 56}{their(\mathbf{b})(\mathbf{i})} = \frac{\sin BEC}{7}$ oe
4	(a) (i)	Ariven with comparable form for both shown or difference between the two fractions shown	1	Accept probabilities changed to decimals or percentages (to 2sf or better)
	(ii)	$\frac{6}{15}$ oe	2	M1 for $\frac{3}{5} \times \frac{2}{3}$
	(iii)	$\frac{7}{15}$ oe	3	M2 for $\frac{3}{5} \times \frac{1}{3} + \frac{2}{5} \times \frac{2}{3}$ oe 1 -their (a)(ii) $-\frac{2}{5} \times \frac{1}{3}$ or
	(b) (i)	Completes tree diagram correctly	3	M1 for $\frac{3}{5} \times \frac{1}{3}$ or $\frac{2}{5} \times \frac{2}{3}$ seen B2 for 5 values correct or B1 for 1 value correct
	(ii)	$\frac{126}{350} \text{ oe } \left[\frac{9}{25} \right]$	2	M1 for $\frac{3}{5} \times \frac{6}{7} \times \frac{7}{10}$

		my.
Page 4	Mark Scheme	Sy. per
	Cambridge IGCSE – October/November 2014	058

L				
	(iii)	$\frac{344}{350}$ oe	3	M2 for 1 -their $\frac{2}{5} \times$ their $\frac{1}{7} \times$ their $\frac{3}{10}$ oe or $\frac{3}{5} + \frac{2}{5} \times \frac{6}{7} + \frac{2}{5} \times \frac{1}{7} \times \frac{7}{10}$ M1 for their $\frac{2}{5} \times$ their $\frac{1}{7} \times$ their $\frac{3}{10}$ oe or identifies the 7 routes or attempt to add 7 probabilities with at least 5 correct $\frac{9}{25} + \frac{27}{175} + \frac{3}{50} + \frac{9}{350} + \frac{6}{25} + \frac{18}{175} + \frac{1}{25}$ oe
5	(a) (i)	$\begin{pmatrix} 0 & -4 \\ 4 & 0 \end{pmatrix}$	1	
	(ii)	$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$	1	
	(iii)	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	2	B1 for three correct elements
	(iv)	$\begin{pmatrix} -13 \\ 5 \end{pmatrix}$	2	B1 for either correct in this form
	(b)	$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	3	M1 for understanding to find the inverse of Q and M1 for det = 1 or for $k \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} k \neq 0$ Alternative $ \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Leading to $a - 2c = 1$ and $c = 0$ then $a = 1$ and $b - 2d = 1$ and $d = 1$ then $b = 2$ M2 all four equations, M1 for a pair of correct equations
6	(a) (i)	$\frac{x^8}{3}$ final answer	1	
	(ii)	$15x^7y^3$ final answer	2	M1 for 2 elements correct
	(iii)	$16x^8$ final answer	2	M1 for $16x^k$ or kx^8

		my
Page 5	Mark Scheme	Sy. per
	Cambridge IGCSE – October/November 2014	058

				6
	(b)	$\sqrt{\left([-]7\right)^2 - 4.3 - 12} \text{ or better}$ and	B1 B1	or for $\left(x - \frac{7}{6}\right)^2$ Must see $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ or both
		p = []7 and $r = 2(3)$ oe	BI	or for $\frac{7}{6} \pm \sqrt{4 + \left(\frac{7}{6}\right)^2}$
		3.48, -1.15 cao	B1B1	After B0 , SC1 for answer 3.5 and -1.1 or 3.482 and -1.149 to -1.148 seen or for 3.48, -1.15 seen or for answer -3.48 and 1.15
	(c)	$\frac{x+5}{x^2}$ or $\frac{1}{x} + \frac{5}{x^2}$ final answer nfww	3	B1 for $(x+5)(x-5)$ and B1 for $x^2(x-5)$
7	(a)	$\frac{1}{2} \times 8 \times 8 \times \sin 56$ oe	M1	or $[\frac{1}{2} \times 2]$ 8sin28 × 8cos28 or $[\frac{1}{2} \times 2] \times 7.06 \times$
		26.52 to 26.53	A1	3.75
	(b) (i)	72.[0] or 71.87 to 72.0	3	M2 for 26.5/($\pi \times 6.5^2$) × 360 oe or M1 for $\frac{x}{360} \times \pi \times 6.5^2 = 26.5$ or better
	(ii)	21.1 or 21.2 or 21.14 to 21.17	3	M2 for $\frac{their (\mathbf{b})(\mathbf{i})}{360} \times \pi \times 2 \times 6.5 + 2 \times 6.5$ oe or $\frac{their (\mathbf{b})(\mathbf{i})}{360} \times \pi \times 2 \times 6.5$ oe or $\frac{their (\mathbf{a})}{0.5 \times 6.5}$
	(c) (i)	$\frac{30}{360} \times \pi \times r^2 - \frac{1}{2} \times r^2 \times \sin 30 \text{ oe}$	M2	M1 for $\frac{30}{360} \times \pi \times r^2$ or $\frac{1}{2} \times r^2 \times \sin 30$
		$\frac{1}{12} \times \pi \times r^2 - \frac{1}{4} \times r^2$	A1	
		$\frac{1}{4}r^2\left(\frac{1}{3}\pi - 1\right)$	A1	Dep on M2 A1 and no errors seen
	(ii)	20.6 or 20.7 or 20.55 to 20.71	3	M2 for $[r^2] = \frac{5}{\frac{1}{4}(\frac{1}{3}\pi - 1)}$
				or M1 for one correct rearrangement step to r from $\frac{1}{4}r^2\left(\frac{1}{3}\pi - 1\right) = 5$

		The state of the s
Page 6	Mark Scheme	Sy. per
	Cambridge IGCSE – October/November 2014	058

			1	3.
8	(a) (i)	(1, 2)	1+1	M1 for gradient = $\frac{84}{31}$ oe
	(ii)	y = 3x - 1 cao final answer	3	M1 for gradient = $\frac{84}{31}$ oe
				and M1 for substituting (3, 8) or (-1, -4) into their $y = 3x + c$ or for finding y-intercept is -1
	(b) (i)	(x+5)(x-2) isw solutions	2	SC1 for $(x + a)(x + b)$ where $ab = -10$ or $a + b = 3$
	(ii)	[a=] -5 [b=] 2 [c=] -10	3FT	B1FT for each of <i>their</i> 5 and <i>their</i> -2 from (b)(i) and B1 for $c = -10$
	(iii)	x = -1.5	1FT	$\mathbf{FT} \ x = (their \ (a+b))/2$
	(c)	Inverted parabola	B1	
		x-axis intercepts at −2 and 9	B2	B1 for each
		y-axis intercept at 18	B1	After B0 allow SC1 for $(9-x)(2+x)$ oe
	(d) (i)	p = 6 $q = 43$	3	B2 for $(x+6)^2 - 43$ or $p = 6$ or $q = 43$ or M1 for $(x+6)^2$ or $x^2 + px + px + p^2$ and M1 for $-7 - (their 6)^2$ or $p^2 - q = -7$ or $2p = 12$
	(ii)	-43	1FT	FT – their q
9	(a) (i)	7	4	M2 for $\frac{16 \times 11 + 17 \times 10 + 18p + 19 \times 4 + 20 \times 8}{11 + 10 + 4 + 8 + p} = 17.7$ or better or M1 for sum of two correct products or better or for [total =] 11 + 10 + 4 + 8 + p and B1 for $582 + 18p = 17.7 (33 + p)$
	(ii)	17	1FT	STRICT FT median for <i>their p</i> if integer
	(b) (i)	64	2	M1 for $\frac{320}{6.4} \times 1.28$ oe
	(ii)	40	2	M1 for $\frac{320}{480} \times 60$ oe
	(iii)	1.6[0]	2FT	FT their (b)(i) / their (b)(ii) evaluated correctly to 2dp
				M1 for <i>their</i> (b)(i) / <i>their</i> (b)(ii) or $\frac{480}{6.4} \times 1.28 \div 60$

Page 7	Mark Scheme	Syl oer
	Cambridge IGCSE – October/November 2014	058

			6
(c)	9.9125 cao	5	B4 for answer 9912.5 or M1 for 25 to 35 × 290 to 310 oe
			M1 for 25 to 35×290 to 310 oe
			and B1 for 32.5 used and B1 for 305 or 5 mins 5 secs used
			and M1 indep for any correct conversion seen m to km
10 (a) (i)	5x + 14 final answer	2	M1 for $5x + k$ or $kx + 14$
(ii)	14.2	3	M1 for $5x = 32 - 14$ FT their expression in (a)(i) A1FT for $x = 3.6$
(b)	8a - 3b + 14 = 32.5 or better $5a + 4b + 13.5 = 39.75$ or better	B1 B1	8a - 3b = 18.5 $5a + 4b = 26.25$
	Equates coefficients of either a or b $40a - 15b = 92.5$ $40a + 32b = 210$ or $32a - 12b = 74$ $15a + 12b = 78.75$	M1	or rearranges one of <i>their</i> equations to make a or b the subject e.g. $a = \frac{3b + 18.5}{8}$
	Adds or subtracts to eliminate $47b = 117.5$ $47a = 152.75$	M1	Dep on previous method or correctly substitutes into the second equation e.g. $\frac{5(3b+18.5)}{8} + 4b = 26.25$
	[<i>a</i> =] 3.25	A1	G C C C C C C C C C C C C C C C C C C C
	[<i>b</i> =] 2.5	A1	After M0 scored SC1 for 2 correct values with no working or for two values that satisfy one of their original equations