## Question 1

Solve the inequality $\quad 25-3 x<7$.

## Answer

## Question 2

Solve the simultaneous equations
$3 x+4 y=27$,
$4 x-2 y=25$.
Answer $x=$

$$
y=
$$[3]

## Question 3

Make $y$ the subject of the formula $x=\frac{4+\sqrt{y}}{3}$ :

## Question 5

Simplify $\frac{a x-a y}{p x-p y+q x-q y}$.

## Answer

[3]

Question 6
(a) (i) Expand $\left(x^{2}-1\right)\left(x^{2}+1\right)$.

Answer (a)(i)
(ii) Factorise $x^{2}-1$.

Answer (a)(ii)
(b) $9999=10^{4}-1$. Write 9999 as a product of prime factors.

## Question 7

Solve the equation $x^{2}-2 x-5=0$, giving your answers correct to 2 decimal places. Show all your working.

Answer $x=$ $\qquad$ or

## Question 8

$\mathrm{f}: x \mapsto 3-2 x \quad$ and $\quad \mathrm{g}: x \mapsto \frac{x+1}{4}, \quad$ for all values of $x$.
(a) Find $f\left(-\frac{3}{4}\right)$.

Answer (a)
(b) Find the inverse function, $\mathrm{g}^{-1}(x)$.

Answer (b) $\mathrm{g}^{-1}(x)=$
[2]
(c) Find the composite function, $\mathrm{fg}(x)$, giving your answer as a single fraction.

## Question 9


(a) Find the equations of the lines $l_{1}, l_{2}$ and $l_{3}$.

Answer (a) $l_{1}$ :
$t_{2}:$
$l_{3}:$
(b) The unshaded region, labelled $R$, is defined by three inequalities. Write down these three inequalities.

Answer (b) $\qquad$
$\qquad$

## Question 10

## Answer the whole of this question on a sheet of graph paper.

The equation $h=20 t-5 t^{2}+I$ gives the height $h$ metres above ground level of a stone $t$ seconds $k$ has been thrown vertically upwards. Some values of $h$ and $t$ are given in the following table.

| $t$ | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h$ | 1 | 9.75 | 16 | 19.75 | 21 | $a$ | 16 | 9.75 | $b$ | $c$ |

(a) Calculate the values of $a, b$ and $c$.
(b) Using a scale of 2 cm to represent 0.5 seconds on the horizontal $t$-axis and 2 cm to represent 4 m on the vertical $h$-axis, draw the graph of $h=20 t-5 t^{2}+1$ for $0 \leqslant t \leqslant 4.5$.
(c) Use your graph to answer these questions.
(i) What is the value of $t$ when the stone reaches ground level?
(ii) For how long is the stone more than 12 m above the ground? Give your answer in seconds to I decimal place.
(iii) How far does the stone travel altogether in the first 3 seconds?
(d) (i) Draw a suitable tangent on your graph and use it to calculate an estimate of the gradient (slope) when $t=1$.
(ii) What quantity does the gradient measure and what are the units for this quantity?

| QUESTION | ANSWER | MARK |  |
| :---: | :---: | :---: | :---: |
| 1 | $x>6$ | 2 | (M1) for $18<3 x$ or $-3 x<-18$ |
| 2 | $x=7 ; \quad y=1 \frac{1}{2}$ | 3 | (M1) for any complete correct method <br> (A1) for one correct answer |
| 3 | $y=(3 x-4)^{2}$ | 3 | (M1) for correct multiplication by 3 <br> (M1) for correct subtraction of 4 if first M1 awarded |
| 4 | $\frac{6 x-1}{24}$ | 3 | (M1) for common denominator 24 k (where k is an integer) (A1) for 6 kx or -1 k (same k as above) |
| 5 | $\frac{a}{p+q}$ | 3 | (B1) for $a(x-y)$ <br> (B1) for $p(x-y)+q(x-y)$ |
| 6 (a)(i) | $\mathrm{x}^{4}-1$ | 1 |  |
| (a)(ii) | $(\mathrm{x}+1)(\mathrm{x}-1)$ | 1 |  |
| (b) | $3 \times 3 \times 11 \times 101$ | 2 | (SC1) for correct partial factorisation (at least 3 terms) |
| 7 | -1.45, 3.45 | 4 | (B1) for $\sqrt{24}$ or (B2) for $\frac{2 \pm \sqrt{24}}{2}$ <br> Alt. method: (B1) for $(x-1)^{2}-6=0$ or (B2) for $x=1 \pm \sqrt{6}$ (SC2) for 1.45, -3.45 (sign error) or (SC3) for a rounding error |
| 8 (a) | $4 \frac{1}{2}$ | 1 | Allow $\frac{9}{2}$ |
| (b) | $4 \mathrm{x}-1$ | 2 | (M1) for $4 \mathrm{y}-1$ seen in correct method |
| (c) | $\frac{5-x}{2}$ | 2 | $\text { (M1) for } 3-\frac{2(x+1)}{4}$ |
| 9 (a) | $y=1, y=2 x, x+y=5$ | 1,1,1 | Correct answers only |
| (b) | $y>1, \quad y \leq 2 x, x+y \leq 5$ | 2 | (B1) for 2 correct anwers |
| 10 (a) | 19.75, 1, -10.25 | 3 | (B1) for each correct answer |
| (b) | Scales correct <br> 10 correct points <br> Reasonable curve drawn | $\begin{aligned} & 1 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$ | (P2) for 8 or 9 points correct, (P1) for 6 or 7 points correct |
| (c)(i) | 4.05 | 1 | Allow [4.0 < t < 4.1] |
| (c)(ii) | 2.7 | 2 | (B1) for [0.6 <t < 0.7] <br> (B1) for [3.3 < t < 3.4] |
| (c)(iii) | 25 | 2 | (B1) for 21-1 = 20 (distance travelled to highest point) <br> (B1) for 21-16=5 (distance travelled from highest point) |
| (d)(i) | Tangent drawn at $(1,16)$ Gradient = 10 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | (M1) for a (reasonably generous) chord, e.g. allow slight space (M1) for 'his' (vertical $\div$ horizontal) only if scale used correctly |
| (d)(ii) | Speed, m/s | 1,1 |  |

## TYPES OF MARK

Most of the marks (those without prefixes and ' $B$ ' marks) are given for accurate results, drawings or statements.
' M ' marks are awarded for any correct method applied to the appropriate numbers.
'B' marks are given for a correct statement or step.
' $A$ ' marks are for accurate results or statements but are awarded only if the relevant ' $M$ ' marks have been earned.
'SC' marks are awarded in special cases.
The symbol ' $\sqrt{ }$ ' indicates that a previous error is to be 'followed through' i.e. the mark can be gained if the candidate has made no further error in


