UNIT 7 (Extended) FURTHER ALGEBRA

Recommended Prior Knowledge

It is strongly recommended that candidates have a thorough knowledge and understanding of the algebraic topics covered in Unit 1 and Unit 6. The Unit also requires candidates to be competent in manipulating fractions.

Context

This unit draws on basic concepts of algebra to establish a deeper understanding.

Outline

The topics in this unit may be studied sequentially. There is some element of choice, however, and Centres may wish to teach topics in a different order. Work on functions, transforming complex formulae, solving simultaneous and quadratic equations, is completed together with solving simple problems in linear programming. With all sections it is expected that candidates will be set questions of varying difficulty to complete for themselves.

	Solve quadratic equations by factorisation and either by use of the formula or by completing the square.	Use straightforward examples to illustrate how to solve quadratic equations by factorisation, by using the quadratic formula and by completing the square (real solutions only). Construct equations from information given and then solve them to find the unknown quantity. This could involve the solution of linear, simultaneous or quadratic equations.	
$\begin{aligned} & 24 \\ & 25 \end{aligned}$	Solve simple linear inequalities. Represent inequalities graphically and use this representation in the solution of simple linear programming problems (the conventions of using broken lines for strict inequalities and shading unwanted regions will be expected).	Use straightforward examples to illustrate how to solve simple linear inequalities. Start by showing that multiplying or dividing an expression by a negative number reverses the inequality sign. Use straightforward examples to illustrate how to solve linear programming problems by graphical means. Construct inequalities from constraints given and show that a number of possible solutions to a problem exist, indicated by the unshaded region on a graph.	Information about inequalities and graphs at http://www.projectgcse.co.uk/maths/inequalities.htm
22	Use function notation, e.g. $\mathrm{f}(x)=3 x-5$, f: $x \rightarrow 3 x-5$ to describe simple functions, and the notation $f^{-1}(x)$ to describe their inverses; form composite functions as defined by $\mathrm{gf}(x)$ $=g(f(x))$.	Define $\mathrm{f}(x)$ to be a rule applied to values of x. Evaluate simple functions for specific values, describing the functions using $\mathrm{f}(x)$ notation and mapping notation. Introduce the inverse function as an operation which 'undoes' the effect of a function. Evaluate simple inverse functions for specific values, describing the functions using f ${ }^{1}(x)$ notation and mapping notation. Using linear and/or quadratic functions, $f(x)$ and $g(x)$, form composite functions, $\operatorname{gf}(x)$, and evaluate them for specific values of x.	
18	Construct tables of values for functions of the form $\mathrm{ax}+\mathrm{b}$, $\pm x^{2}+a x+b, a / x(x \neq 0)$ where a and b are integral constants; draw and interpret such graphs; solve linear and quadratic equations approximately by graphical methods. Construct tables of values and draw graphs for functions of the form $a x^{n}$ where a is a rational constant and $n=-2,-1,0$, $1,2,3$ and simple sums of not more than three of these and for functions of the form a^{x} where a is a positive integer; estimate gradients of curves by drawing tangents; solve associated equations approximately by graphical methods.	Draw quadratic functions from a table of values. Show how the solutions to a quadratic equation may be approximated using a graph. Extend this work to show how the solution(s) to pairs of equations (e.g. $y=x^{2}-2 x-3$ and $y=x$) can be estimated using a graph. Class activity: Computer packages such as Omnigraph or Derive are useful here. Draw functions of the form $\frac{a}{x^{2}} ; \frac{a}{x} ; a x^{3} ; a^{x}$ where a is a constant, from tables of values. Recognise common types of function from their graphs, e.g. parabola, hyperbola, quadratic, cubic, exponential. Use straightforward examples to find the gradient at a point on a curve. Extend this to find the equation of the tangent at a point on a curve.	

