

### **Cambridge IGCSE™**

| MATHEMATICS      |           | 0607/62          |
|------------------|-----------|------------------|
| Paper 6 Extended | Octob     | er/November 2022 |
| MARK SCHEME      |           |                  |
| Maximum Mark: 60 |           |                  |
|                  |           |                  |
| Γ                |           |                  |
|                  | Published |                  |
|                  |           |                  |

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

### GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

### **GENERIC MARKING PRINCIPLE 2:**

Marks awarded are always whole marks (not half marks, or other fractions).

### **GENERIC MARKING PRINCIPLE 3:**

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

### GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

### **GENERIC MARKING PRINCIPLE 5:**

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 8

| Ma | Maths-Specific Marking Principles                                                                                                                                                                                                             |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1  | Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.                                     |  |  |
| 2  | Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.                                                            |  |  |
| 3  | Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.                                                                                                               |  |  |
| 4  | Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).                                                                                            |  |  |
| 5  | Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread. |  |  |
| 6  | Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.                                                                                              |  |  |

### MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

### Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

### **Abbreviations**

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2022 Page 3 of 8

| Question | Answer                                                                                                                                                                                                                                    | Marks | Partial Marks                                                                                      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------|
| 1(a)     | $15 \times 2 + 1$                                                                                                                                                                                                                         | C1    |                                                                                                    |
|          | 31                                                                                                                                                                                                                                        | 1     |                                                                                                    |
| 1(b)     | 4, 8, 16                                                                                                                                                                                                                                  | 1     |                                                                                                    |
| 1(c)     | $2^{n}-1$                                                                                                                                                                                                                                 | 1     |                                                                                                    |
| 2(a)     | 5, 13, 29                                                                                                                                                                                                                                 | 2     | <b>B1</b> for 5 or <b>B1FT</b> for one correct calculation using <i>their</i> 5 or <i>their</i> 13 |
| 2(b)(i)  | Correct substitution for <i>n</i> to make correct equation                                                                                                                                                                                | 1     | FT their terms in (a)                                                                              |
| 2(b)(ii) | Correct equation isolating a or b                                                                                                                                                                                                         | 1     | FT their part (b)(i)                                                                               |
|          | Correctly substituting $a = 2$ in an equation in $a$ and $b$ , leading to $b = -3$ or correctly substituting $b = -3$ leading to $a = 2$ .                                                                                                | 1     |                                                                                                    |
| 3        | $[1 \times 2 + 5 =] 7$<br>and $7 \times 2 + 5 = 19$<br>and $19 \times 2 + 5 = 43$                                                                                                                                                         | 2     | <b>B1</b> for 7, 19, 43, or the second statement, or the third statement.                          |
|          | $3 \times 2^4 - 5 = 43$                                                                                                                                                                                                                   | 1     |                                                                                                    |
| 4(a)     | Steps Expression  Multiply by 2, then add 1 $2^n - 1$ Multiply by 2, then add 3 $2 \times 2^n - 3$ Multiply by 2, then add 5 $3 \times 2^n - 5$ Multiply by 2, then add 7 $4 \times 2^n - 7$ Multiply by 2, then add 9 $5 \times 2^n - 9$ | 2     | <b>B1</b> for 9 in first column <b>B1</b> for $4 \times 2^n - 7$ and $5 \times 2^n - 9$            |
| 4(b)     | $[a =] \frac{k}{2} + \frac{1}{2} \text{ or } \frac{k+1}{2} \text{ oe}$                                                                                                                                                                    | 2     | <b>B1</b> for $\frac{k}{2}$ or $\frac{k}{2}$ subsumed in the answer e.g. $\frac{k-1}{2}$           |
|          | [b=]-k                                                                                                                                                                                                                                    | 1     |                                                                                                    |

© UCLES 2022 Page 4 of 8

| Question | Answer                                                                                                                                                                                              | Marks | Partial Marks                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------|
| 4(c)     | $2^5 \left(\frac{k+1}{2}\right) - k = 286$                                                                                                                                                          | C1    | FT their $a \times 32 + their b$ where both $a$ and $b$ are in terms of $k$ only |
|          | 16k + 16 - k = 286 oe                                                                                                                                                                               | C1    | FT their $a$ and their $b$ where both $a$ and $b$ are in terms of $k$ only       |
|          | 18                                                                                                                                                                                                  | 1     |                                                                                  |
| 5(a)(i)  | 5                                                                                                                                                                                                   | 1     |                                                                                  |
| 5(a)(ii) | $a \times 3^{(1-1)} + b = 1$ or $a + b = 1$ oe<br>$a \times 3^{(2-1)} + b = 5$ or $3a + b = 5$ oe                                                                                                   | 2     | B1 for each FT their 5                                                           |
| 5(b)     | Correctly eliminating one variable                                                                                                                                                                  | C1    | FT their equations in (a)(ii)                                                    |
|          | [a =] 2 and $[b =] -1$                                                                                                                                                                              | 2     | B1 for each FT their (a)(ii) equations                                           |
| 6(a)     | $2 \times 4^{n-1} - 1 \\ 2 \times 5^{n-1} - 1$                                                                                                                                                      | 1     |                                                                                  |
| 6(b)     | $2 \times 6^{(10-1)} - 1 = 20155391$<br>and $2 \times 6^{(9-1)} - 1 = 3359231$                                                                                                                      | C2    | C1 for $2 \times 6^{(10-1)} - 1 = 20155391$                                      |
|          | OR<br>$6^{n-1} = 10000000.5$<br>and $\frac{\log 10000000.5}{\log 6} = 9$ oe<br>or $\log_6 10000000.5 = 9$ oe<br>or $6^9 = 10077696$<br>or $\frac{\log 100000000.5 + \log 6}{\log 6} = 10$ or $9.99$ |       | OR C1 for one statement                                                          |
|          | OR Correct sketch of graphs                                                                                                                                                                         |       | OR C1 for correct sketch of $y = 2 \times 6^n - 1$                               |
|          | 10[th]                                                                                                                                                                                              | 1     | If 0 scored <b>SC1</b> for $n = 9.99[]$ seen                                     |
| 7(a)     | $\frac{20}{50} \times 60$ soi oe                                                                                                                                                                    | C2    | C1 for $\frac{20}{50}$ or × 60 or $\frac{50}{60}$                                |
|          | 24 minutes                                                                                                                                                                                          | 1     |                                                                                  |

© UCLES 2022 Page 5 of 8

| Question | Answer                                                                                         | Marks | Partial Marks                                                              |
|----------|------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------|
| 7(b)     | $m = \frac{1200}{v}$                                                                           | 1     |                                                                            |
| 8(a)(i)  | 20 seen                                                                                        | C1    |                                                                            |
|          | 30 km/h                                                                                        | 1     | <b>FT</b> 50 – their 20                                                    |
| 8(a)(ii) | $\frac{20 \times 60}{30} = 40 \text{ oe}$ or $\frac{20}{30} = \frac{2}{3}$ hour oe = 40 [mins] | 1     |                                                                            |
| 8(b)     | $50 - \frac{x}{2}$ seen                                                                        | 1     |                                                                            |
|          | $\frac{1200}{50 - \frac{x}{2}}$ leading to $\frac{2400}{100 - x}$                              | 1     |                                                                            |
| 8(c)     | Correct sketch                                                                                 | 1     | Increasing curve from <i>T</i> axis not touching or crossing <i>x</i> axis |
|          | T intercept marked as 24                                                                       | C1    |                                                                            |
| 8(d)     | T = 30 drawn on the graph                                                                      | C1    |                                                                            |
|          | or $\frac{2400}{100-x} = 30$                                                                   |       |                                                                            |
|          | 7.20 oe                                                                                        | 1     |                                                                            |

© UCLES 2022 Page 6 of 8

| Question | Answer                                                                                                                       | Marks | Partial Marks                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------|
| 8(e)(i)  | $\frac{2400}{100-95}$ or correct sketches of $T = \frac{2400}{100-x}$ and $x = 95$ or $x = 95$ drawn on graph in <b>8(c)</b> | C1    |                                                                        |
|          | 7h 35 min                                                                                                                    | 2     | FT their 95 if between 60 and 100<br>B1 for 8 [hours] or 480 [minutes] |
| 8(e)(ii) | Not useful for leaving home very late oe or unsuitable for 100 minutes [after 7am] oe                                        | 1     |                                                                        |
| 9(a)     | number of minutes after 07.00 + time to drive to work oe                                                                     | 1     |                                                                        |
| 9(b)(i)  | $x + \frac{2400}{100 - x} = 120$                                                                                             | 1     |                                                                        |
|          | Correct elimination of fractions                                                                                             | 1     |                                                                        |
|          | Correct expansion of brackets leading to $x^2 - 220x + 9600 = 0$ nfww                                                        | 1     |                                                                        |

© UCLES 2022 Page 7 of 8

| Answer                                                                                 | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Partial Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sketch of $y = x^2 - 220x + 9600$ with left positive <i>x</i> intercept clearly marked | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C1 for sketch of $y = x^2 - 220x + 9600$                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OR                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (x-60)(x-160)                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for $(x + a)(x + b)$ where $ab = 9600$ or $a + b$<br>= -220 or 60 and 160 with wrong signs                                                                                                                                                                                                                                                                                                                                                                                  |
| OR                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for $\frac{-(-220) \pm \sqrt{(-220)^2 - 4 \times [1] \times 9600}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OR $x - 110 = \pm \sqrt{2500}$ leading to 60, 160                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OR $(x-110)^2 = 2500$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OR A minimum of two trials, one of which is 60.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OR for $60^2 - 220 \times 60 + 9600 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 60                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8am oe                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $v - \frac{x}{2}$ seen for speed                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\frac{d}{v - \frac{x}{2}} \times 60$ oe                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| leading to $\frac{120d}{2v - x}$                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\frac{120d}{2v - 30} = 90$ oe                                                         | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Correct next step towards isolating v                                                  | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $v = \frac{2}{3}d + 15  \text{oe isw}$                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                        | Sketch of $y = x^2 - 220x + 9600$ with left positive $x$ intercept clearly marked  OR $(x - 60)(x - 160)$ OR $-(-220) \pm \sqrt{(-220)^2 - 4 \times [1] \times 9600}$ $2$ $60, 160$ OR $x - 110 = \pm \sqrt{2500} \text{ leading to } 60, 160$ OR A minimum of two trials, one of which is $60$ . $60$ 8am oe $v - \frac{x}{2} \text{ seen for speed}$ $\frac{d}{v - \frac{x}{2}} \times 60 \text{ oe}$ $\frac{120d}{2v - x}$ $\frac{120d}{2v - 30} = 90 \text{ oe}$ Correct next step towards isolating $v$ | Sketch of $y = x^2 - 220x + 9600$ with left positive $x$ intercept clearly marked  OR $(x - 60)(x - 160)$ OR $-(-220) \pm \sqrt{(-220)^2 - 4 \times [1] \times 9600}} = \frac{1}{2}$ 60, 160  OR $x - 110 = \pm \sqrt{2500} \text{ leading to } 60, 160$ OR A minimum of two trials, one of which is 60.  60  1  8am oe 1 $v - \frac{x}{2}$ seen for speed $\frac{d}{v - \frac{x}{2}} \times 60$ oe $\frac{120d}{2v - x}$ 1  C1  Correct next step towards isolating $v$ C1 |

© UCLES 2022 Page 8 of 8