

International General Certificate of Secondary Education

MARK SCHEME for the November 2003 question papers

	0652 PHYSICAL SCIENCE
0652/01	Paper 1 (Multiple Choice), maximum raw mark 40
0652/02	Paper 2 (Core), maximum raw mark 80
0652/03	Paper 3 (Extended), maximum raw mark 80
0652/06	Paper 6 (Alternative to Practical), maximum raw mark 60

CAMBRI BAR BAR Cambridge Com

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0652 (Physical Science) in the November 2003 examination.

	maximum	mir	nimum mark re	equired for gra	de:
	mark available	А	С	Е	F
Component 1	40	-	27	21	18
Component 2	60	-	32	22	17
Component 3	80	39	26	-	-
Component 5	30	-	-	-	-
Component 6	60	38	30	23	19

The threshold (minimum mark) for B is set halfway between those for Grades A and C.

The threshold (minimum mark) for D is set halfway between those for Grades C and E.

The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

MARK SCHEME

INTERNATIONAL GCSE

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0652/01

PHYSICAL SCIENCE Multiple Choice

Mark Scheme	
IGCSE – NOVEMBER 2003	

Page 1

	Mark Schem IGCSE – NOVEMBE	e ER 2003	Syllabu 0652	DaCan;
Question Number	Кеу	Question Number	Кеу	bridge.
1	С	21	D	
2	Α	22	Α	
3	В	23	С	
4	D	24	С	
5	Α	25	D	
6	Α	26	D	
7	С	27	Α	
8	D	28	В	
9	В	29	Α	
10	В	30	С	
11	D	31	Α	
12	С	32	В	
13	Α	33	В	
14	D	34	В	
15	В	35	D	
16	D	36	С	
17	С	37	В	
18	Α	38	Α	
19	Α	39	Α	
20	В	40	С	

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/02

PHYSICAL SCIENCE Core

			477		
F	Page	e 1	Mark Scheme Syllabus		
L				aCan	
1	(a)	(i)	Loss of <u>one</u> (outer) electron	1	arido
		(ii)	Gain of <u>one</u> (outer) electron	1	Se.co.
		(iii)	Transfer of electron (from Na to Cl to form ions)	1	177
			Na [™] ions attract C <i>I</i> [⊥]	1	[4]
	(b)		Diagram or text or both for ideas of:		
			each atom provides one electron OR each atom needs one more electron	1	
			Therefore, shared pair of electrons	1	[2]
				Tota	al [6]
2	(a)		R: ultra violet	1	
			S: infra red	1	[2]
	(b)		Equal	1	[1]
	(c)		1.35 (micrometers) (accept 1.33 to 1.38)	1	[1]
				Tota	al [4]
3			Shake/mix with water	1	
-			Filter	1	
			Dry residue (on filter paper) to obtain pepper	1	
			Leave filtrate/to crystallise/evaporate filtrate to dryness, to obtain salt	1	[4]
				Tota	al [4]

Page 2	Mark Scheme	Syllabus		
	IGCSE – NOVEMBER	<u>R 2003 0652 </u>	Pac	
			en	6.
	Proton mass 1		1	100
	Neutron charge 0 (do NOT accep	ot a dash [-])	1	
	Electron charge –1 (do NOT acce	ept a dash [-])	1	[3]
			Tot	al [3]
(a)	Lise of speed = distance/time_or	· = 200/25	1	
(4)	8		1	
	m/s		1	[3]
			-	[-]
(b)	R		1	
	Low centre of mass (equal to s)		1	
	Wide base		1	[3]
			Tot	al [6]
(a)	High density			
	High melting point			
	Coloured compounds	ANY TWO 1 + 1 (2)		
	Used as a catalyst			
(b)	Painting			
	Greasing	ANY TWO 1 + 1 (2)		
	Coating with plastic			
	Galvanising			

Page	3	Mark Scheme Syllabus	1	
		IGCSE – NOVEMBER 2003 0652	aCar	
(a)	(i)	(Nuclide with) the same Proton/Atomic Number but different Nucleon/Mass number	1	bridge
		(OR same number of protons Different number of neutrons	1 1)	
	(ii)	G-M tube, solid state detector	1	
	(iii)	Alpha particles would be absorbed by the plastic bottle	2	[5]
		(alphas short range/not penetrating enough	1)	
(b)		Clear attempt to halve once	1	
		Clear attempt to halve at least once more	1	
		60 (Bq)	1	[3]
		(Correct answer with no working = max 2)		
(c)		Radiation from radioactive isotopes in the air/earth/building	2	
		(Vague statement, such as 'radiation from the surroundings' = max 1; do NOT accept 'radiation from the background')		
			Tota	l [10]
(a)		'Acid particles' (H ⁺ (aq), H ₃ O+ (aq) hydrogen ions) are further apart	1	
		Therefore, fewer collisions with zinc (per second)	1	[2]
(b)		'Acid particles' (as above) move about faster	1	
		Therefore, collisions (with metal) are more frequent OR more 'vigorous' or equivalent	1	[2]
			Tot	al [4]

			Mary Mary		
	Page	e 4	Mark Scheme Syllabus	2	
9	(a)		Only single bonds between carbon atoms	AaCann.	bridge.com
	(b)	(i)	Water	1	
			Carbon dioxide	1	[2]
		(ii)	No carbon or soot produced No nitrogen oxides produced ANY TWO 1 + 1 (2)		
			No sulphur oxides produced No carbon monoxide produced		[2]
				Tot	al [5]
10	(a)		Differential expansion clear	1	
			Brass expands more than iron OR so brass on outside of curve or equivalent	1	[2]
	(b)	(i)	Clear that strip is heated by current	1	
			Cools remaking the circuit	1	
		(ii)	Any circuit requiring a flashing light, such as a car indicator	1	[4]
				Tot	al [6]
11	(a)		Metal densities HIGH – non-metals LOW	1	
			Metals are CONDUCTORS – non-metals INSULATORS	1	[2]
	(b)		Order of reactivity – gold, iron, aluminium Further statement	1 1	
				Tota	al [4]

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/03

PHYSICAL SCIENCE Paper 3 (Extended)

Page 1	Mark Scheme Sy	llabus		2
	IGCSE – NOVEMBER 2003	0652		Da
				101
Question1				
a)	Nitric (condone HNO ₃)		1	
b)	$CuCO_3 + 2HNO_3 \longrightarrow Cu(NO_3)2 + H_20 + CO_2$		1	
	1 for formulae 1 for balanced		1	
c)	fizzing (gas <u>bubbles</u> or similar) solid dissolves			
	temperature increase ANY 2		2	
d)	filter to remove excess solid – must come first evaporate solution (slowly) NOT heat over Bunsen – condone <i>heat gently</i>		1 1	
d)	sodium carbonate is soluble in water condone all sodium salts are soluble		1	[8]
Question 2				
a) (i)	reference to dull or matt reference to black or dark does not reflect radiation or sentiments		1 1 1	
(ii)	water would move up tube level in tube drops initially water in flask expands Al	NY 2	2	
b) (i)	quantity of water too large limited temperature rise and expansion support	ble s	1 1	
	bore of tube too large limited volume increase would not show up			
	heat needs to conduct through glass wall glass insulator			
(ii)	smaller bulb – less liquid would show greater increas	se in	1+1	
	thinner wall – easier for conduction to liquid narrower tube – small volume expansion will show up r easily	nore	1+1	
	liquid with greater expansivity – easier to see increase length	se in Y 2		[11]

гау	e 2	Mark Scheme Syllabu	S S
		IGUSE - NUVEMBER 2003 0652	TaC.
Ques	stion 3		month
(a)	(i)	diamond much harder than graphite Any appropriate reference to layers in graphite	1 1
	(ii)	graphite better conductor than diamond mobile (condone <i>free</i>) electrons (between layers)	1 1
(b)	(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		1 for double bonds 1 for shells full	2
	(ii)	restricted supply of O ₂ or air	1
	(iii)	CO combines with haemoglobin OR CO prevents O_2 from entering red blood cells	1
Ques	stion 4		[8]
(a)	(i)	8 (2 scores 1) single unit penalty to	2
	(ii)	(i) value/10 or V = IR 0.8 A	1 1
	(iii)	correct transformer equation Vs = 8 or ecf from (a) (i) 12 V ecf from (a) (i)	1 1 1
	(iv)	use of 4 divisions 80 ms	1 1 1
(b)	(i)	diode/rectifier	1
	(::)	half wave rectification shown (2 positive OP 1 pogative	1

					my
Page	e 3	Mark Scheme		Syllabu	s
		IGCSE – NOVEMBER 2003		0652	
Ques	stion 5				
(a)		diffusion			1
(b)		HCl molecules heavier than NH ₃ molecules			
		OR reverse argument (condone <i>particles</i>)			_
		HCl molecules slower or NH_3 molecules faste	er		2
(c)		proton donated to NH ₃ molecule			_
		forming NH_4^+ (OR ammonium) ion			2
(d)		Test: Dissolve NaOH (aq) and warm			
		Result: NH ₃ gas evolved (turns red litmus blu	ie)		2
		allow max 1 for litmus test only if no other te	est inclu	ded	
Ques	stion 6				
(a)		ratio sin <i>i</i> /sin <i>r</i> or $V_{substance}/V_{air or Vac}$			1
()		<i>i</i> and <i>r</i> or $v_{\text{substance}}$ and $v_{\text{air or vac}}$ correctly define	ed		1
		may score these marks if neutral comments correct in (b) (ii)	in this p	art but	
(b)	(i)	60 > 40 or sentiments			1
		because light refracts towards the normal (a water)	is it ente	ers the	1
	(ii)	<i>n</i> = sin 60/sin 40			1
		0.867 and 0.643 seen			1
		1.35			1
Ques	stion 7				
(a)		Al ₂ O ₃			1
(h)		hohavas as acid ar hasa			1
(0)		reacts with acids and bases			י 1
					-
(c)		aeroplanes or co	oking ut	tensils	1
		low density (light) low	density	(light)	1
		corrosion resistant (not 'doesn't rust ') higi	n condu	ctivity	1

Page 4Mark SchemeSyllabus 0652(d)basic oxide accept thallium is a metal (elements become more metallic down group) basic metal oxide scores 21Question 81(a)no current in coil coil loses its magnetism1(b)conversion g → kg or w= mg 0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) (s = ut + ½ gt² or s = ½ gt² or a = (v-u)/t) substitution(s) or idea that maximum speed = twice average 10.4(2) m/s² condone N/kg 5.2 m/s² scores 31			1	m
IGCSE - NOVEMBER 20030652(d)basic oxide accept thallium is a metal (elements become more metallic down group) basic metal oxide scores 21Question 81(a)no current in coil coil loses its magnetism1(b)conversion $g \rightarrow kg$ or $w = mg$ 0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average $10.4(2)$ m/s^2 condone N/kg $5.2 m/s^2$ scores 31	Page 4	Mark Scheme Sy	llabus	
(d)basic oxide accept thallium is a metal (elements become more metallic down group) basic metal oxide scores 21Question 8(a)no current in coil coil loses its magnetism1(b)conversion $g \rightarrow kg$ or $w = mg$ 0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2}gt^2$ or $s = \frac{1}{2}gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average $10.4(2)$ m/s^2 condone N/kg $5.2 m/s^2$ scores 31		IGCSE – NOVEMBER 2003	0652	
(d)basic oxide accept thallium is a metal (elements become more metallic down group) basic metal oxide scores 21Question 8(a)no current in coil coil loses its magnetism1(a)no current in coil coil loses its magnetism1(b)conversion $g \rightarrow kg$ or $w = mg$ 0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average $10.4(2)$ m/s^2 condone N/kg $5.2 m/s^2$ scores 31				
accept thallium is a metal (elements become more metallic down group) basic metal oxide scores 21Question 81(a)no current in coil coil loses its magnetism1(b)conversion $g \rightarrow kg$ or $w = mg$ 0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average $10.4(2)$ m/s^2 condone N/kg $5.2 m/s^2$ scores 31	(d)	basic oxide		1
basic metal oxide scores 2Question 81(a)no current in coil coil loses its magnetism1(b)conversion g → kg or $w = mg$ 0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average 1 $10.4(2)$ m/s^2 condone N/kg $5.2 m/s^2$ scores 31		accept <i>thallium is a metal</i> (elements become more met down group)	allic	1
Question 8(a)no current in coil coil loses its magnetism1(b)conversion $g \rightarrow kg$ or $w = mg$ 0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average $1 0.4(2)$ m/s^2 condone N/kg $5.2 m/s^2$ scores 31		basic metal oxide scores 2		
Question 8(a)no current in coil1coil loses its magnetism1(b)conversion $g \rightarrow kg$ or $w = mg$ 10.20200 scores 11(c)steel high density or heavy or short distance fallen1(c)steel high density or heavy or short distance fallen1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or1 $a = (v-u)/t$ substitution(s) or idea that maximum speed = twice average1 $10.4(2)$ 11 m/s^2 condone N/kg1 $5.2 m/s^2$ scores 31				
(a)no current in coil coil loses its magnetism1(b)conversion $g \rightarrow kg$ or $w = mg$ 0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v - u)/t$) substitution(s) or idea that maximum speed = twice average $1 0.4(2)$ m/s^2 condone N/kg $5.2 m/s^2$ scores 31	Question 8			
(d) no content in con	(a)	no current in coil		1
(b) conversion $g \rightarrow kg$ or $w = mg$ 0.20 200 scores 1 (c) steel high density or heavy or short distance fallen unlikely that effect of air resistance significant (d) appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or a = (v - u)/t) substitution(s) or idea that maximum speed = twice average 10.4(2) m/s ² condone N/kg 5.2 m/s ² scores 3	(a)	coil loses its magnetism		י 1
(b)conversion $g \rightarrow kg$ or $w = mg$ 10.20200 scores 11(c)steel high density or heavy or short distance fallen1unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or1 $a = (v-u)/t$ substitution(s) or idea that maximum speed = twice average1 $10.4(2)$ 1 $10.4(2)$ 1 m/s^2 condone N/kg15.2 m/s^2 scores 3				•
0.20 200 scores 11(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average 10.4(2) m/s ² condone N/kg 5.2 m/s ² scores 31	(b)	conversion $g \rightarrow kg$ or $w = mg$		1
200 scores 1(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average 1 $10.4(2)$ m/s ² condone N/kg $5.2 m/s^2$ scores 3		0.20		1
(c)steel high density or heavy or short distance fallen unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or $a = (v-u)/t$) substitution(s) or idea that maximum speed = twice average 10.4(2) m/s ² condone N/kg 5.2 m/s ² scores 31		200 scores 1		
(c)steel high density or heavy or short distance fallen1unlikely that effect of air resistance significant1(d)appropriate equation(s) ($s = ut + \frac{1}{2} gt^2$ or $s = \frac{1}{2} gt^2$ or1 $a = (v-u)/t$)substitution(s) or idea that maximum speed = twice average1 $10.4(2)$ 1 m/s^2 condone N/kg1 $5.2 m/s^2$ scores 31				
unlikely that effect of air resistance significant1(d)appropriate equation(s) $(s = ut + \frac{1}{2} gt^2 \text{ or } s = \frac{1}{2} gt^2 \text{ or } 1$ $a = (v-u)/t)$ substitution(s) or idea that maximum speed = twice average10.4(2)1m/s ² condone N/kg15.2 m/s ² scores 3	(c)	steel high density or heavy or short distance fallen		1
(d) appropriate equation(s) $(s = ut + \frac{1}{2} gt^2 \text{ or } s = \frac{1}{2} gt^2 \text{ or } 1$ a = (v-u)/t) substitution(s) or idea that maximum speed = twice average 1 10.4(2) 1 m/s ² condone N/kg 1 5.2 m/s ² scores 3		unlikely that effect of air resistance significant		1
a = (v-u)/t) substitution(s) or idea that maximum speed = twice average 1 10.4(2) 1 m/s ² condone N/kg 1 5.2 m/s ² scores 3	(d)	appropriate equation(s) (s = $\mu t + \frac{1}{2} \alpha t^2$ or s = $\frac{1}{2} \alpha t^2$ or		1
substitution(s) or idea that maximum speed = twice average 1 10.4(2) 1 m/s ² condone N/kg 1 5.2 m/s ² scores 3	()	a = (v-u)/t		-
10.4(2) 1 m/s² condone N/kg 1 5.2 m/s² scores 3 1		substitution(s) or idea that maximum speed = twice aver	age	1
m/s ² condone N/kg 1 5.2 m/s ² scores 3		10.4(2)	0	1
5.2 m/s ² scores 3		m/s ² condone N/kg		1
		5.2 m/s ² scores 3		

Question 9

(a)		temperature between 5°C and 40°C (conc glucose in solution yeast (allow zymase or invertase) present	lone <i>warm</i>)	1 1 1
(b)	(i)	180 seen 46 seen		1 1
	(ii)	1 mol glucose \longrightarrow 2 mol EtOH or 180 g glucose $_$ 2 mol EtOH 18.4 g (ecf from (i)) - 9.2 g scores 1	single unit penalty to be applied in (b)	1

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/06

PHYSICAL SCIENCE Paper 6 (Alternative to Practical)

Page 1		Mark Scheme	5	Syllabus	2
		GCSE – NOVEMBER 2	003	0652	Da
)	Completion of table:				
	volume	of beaker/cm ³	time/s		
		100	6		
		500	28		
		1000	58		
					~
		(1 mark each, no toler	ance)		3
	relationshin: o	reater the volume of th	e beaker the longer	r the candle	
))	burns OWTTE (1)				
	explanation: (<i>more)</i> oxygen/air availa	able (1)		2
:)	carbon dioxide				1
d)	test: use cobalt chloride paper OR anhydrous/ copper sulphate (1)				
	result: (blue) cobalt chloride paper turns pink				
	OR	(white) anhydrous cop	per sulphate turns bl	lue (1)	
	(initial colour n	ot necessary for the m	ark)		
	Reject: "find th	e boiling point of the li	quid" (impractical)		
	-				2
e)	Candle wax is	a hydrocarbon/contain	is carbon and hvdroc	gen (1)	
,	Carbon burns to form carbon dioxide				
	bydrogon burns to form water OW/TTE (1)				
	(both neo	cessary for the second	mark)		
	Alternative m	ark scheme for (e):			
	Carbon from th	e candle forms CO_2 (1)		
	Hydrogen from the candle forms water (1)				
	REJECT: wate	r forms by condensation	on CO_2 forms by cor	mbustion (if	
	the source of c	arbon and hydrogen n	ot correctly given)		2

×

Total [10]

Page 2		Mark Scheme Syllabus		Syllabus S	
		IGCSE – NOVEM	BER 2003	0652 Pac	
				mbr	
(a)		Completion of table:			
		position of mass/cm	position of pi	vot/cm	
		4	38.5		
		8	39.4		
		(no tolerance)		2	
(b)	(i)	d₁ = 40 – 10 = 30 cm (1)			
		d ₂ = 50 – 40 = 10 cm (1)	2		
	(ii)				
		unit given as g or grams (1)		2	
(c)		Average all 5 of the masses cal	lculated	1	
(d)		Place 50 cm mark of rule on piv	vot (1)		
		Balance rule on pivot with 100 grock on the other side (or show	g mass on one side and in diagram) (1)		
		Use Principle of Moments to ca OWTTE (1)	Iculate the mass of the I	rock	
		til			
	Measure distances of rock (d_1) and 50 cm mark (d_2) from pivot (1				
	Use the formula; mass = $\frac{d_2 \times 300}{d_1}$				
		OR use the Principle of Momen	· (1)		
		REJECT : use the formula give	ss 3		
				Total [10]	
(a)		25, 3, 44 cm ³	(no tolerance)	3	
(b)	(i)	1			
	(ii)	(ii) iron (1)			
		iron rusts (and reacts with oxyg	ien/air) (1)	2	

(iii) magnesium OR calcium (1)

			mm.		
Page 3		Mark Scheme Syll IGCSE – NOVEMBER 2003 06	abus		
	reacts with wa	^a Cambrid			
	(In (ii) and (iii), if a second metal is given together with a correct one, ignore this as long as the explanation is correct)				
(c)	hydrogen		1		
			Total [9]		
(a)	70, 62, 55°C	c (no tolerance)	3		
(b)	140.0g	(no tolerance) (calculation need not l	be shown) 1		
(c)	points plotted				
	smooth curve	smooth curve (not straight line) (1)			
	IGNORE any	IGNORE any extrapolation through the origin			
(d)	40g of potass	ium nitrate in 100g water at 60°C			
	OR 7 g in 17.	5g water at 60°C			
	OR 20 g in 50) g water at 60°C (etc)	1		
(e)	heat to (partly				
	allow solution				
	Alternative an water bath (1)	a boiling			
	"Evaporate to	2			
			Total [10		
(a)	test 1 c	opper (oxide) or a transition metal present (1)			
	test 3 n	ot a carbonate or hydrogencarbonate (1)			
	test 4 cl	hloride/halide ions (1)			
	test 5 a	mmonia OR alkaline gas OR basic gas (1)	4		

Page 4	Mark Scheme Syllabu IGCSE – NOVEMBER 2003 0652	and a
(b)	(moist) red litmus (paper) (OR Universal Indicator) (1)	Cambri
(0)	turns blue (1) (or turns purple/blue)	193
	OR gas forms white smoke with hydrogen chloride	2
(c) (i)	light blue (1) blue precipitate (1)	
(ii)	deep (1) blue solution (1) (any 3 points)	3
(d)	ammonium chloride (1)	
	copper oxide (1)	2
		Total [11]
(a) (i)	radio (wave)	
(ii)	sound (wave)	2
(b)	The further away the source, the weaker is the sound OWTTE	1
(c) (i)	3.0s (no tolerance, must say 3.0)	
(ii)	3.8 +/- 0.1s	2
(d) (i)	1000/3 = 333 m/s (ecf)	1
(ii)	1000/3.8 = 263 m/s (ecf)	1
(e)	The first (d)(i) (1) because the other one may be affected by the responses of the observer (1) $OWTTE$	2
(-)	responses of the observer (1) OWTTE	2
(f)	Repeat the experiment (and average the results) Use a longer distance	
	Calibrate the c.r.o. screen to show 0.1 s (any one point)	1
		Total [10]