

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2004 question papers

	0652 PHYSICAL SCIENCE
0652/01	Paper 1 (Multiple Choice), maximum raw mark 40
0652/02	Paper 2 (Core), maximum raw mark 80
0652/03	Paper 3 (Extended), maximum raw mark 80
0652/05	Paper 5 (Practical), maximum raw mark 30
0652/06	Paper 6 (Alternative to Practical), maximum raw mark 60

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

					4
					32
					S.
					20
					the 2004 exam
Grade threshol	ds taken for S	yllabus 0652 (Physical Scier	nce) in the Jur	ie 2004 exan
	maximum	mir	nimum mark re	equired for gra	de:
	mark available	A	С	E	F
Component 1	40	36	28	21	17
Component 2	00		45	29	24
Component 2	80	-	45	29	24
Component 2 Component 3	80	49	31	19	14
		49 23			

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0652/01

PHYSICAL SCIENCE Paper 1 (Multiple Choice) Page 1 Mark Scheme PHYSICAL SCIENCE – JUNE 2004

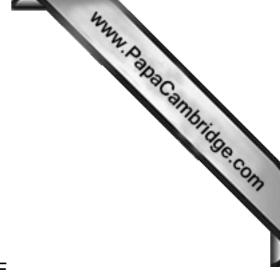
	Mark Schem	le	Syllabus
PH	YSICAL SCIENCE -	JUNE 2004	0652
Question		Question	Syllabus 0652 Key
Number	Key	Number	Key
1	С	21	D
2	D	22	Α
3	D	23	D
4	С	24	D
5	В	25	D
6	C	26	С
8 7	В	27	A
8	Ā	28	D
9	В	29	Ā
10	Ā	30	С
11	D	31	C
12	c	32	D
13	A	33	С
14	A	34	Α
15	D	35	С
16	С	36	Α
17	С	37	А
18	D	38	D
19	Α	39	D
20	D	40	В

TOTAL 40

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60


SYLLABUS/COMPONENT: 0652/02

PHYSICAL SCIENCE Paper 2 (Core)

					5		
	Page	e 1		Mark Scheme _ SCIENCE – JUNE 2004	Syllabus 7	2	
			PHISICAL	_ SCIENCE – JUNE 2004	0652	ap.	
(a)		Points correctly plot (-1 for each omitted Good straight line d	l/incorrectly plotted)		A PapaCo	mbrid
(b)		Suitable triangle/fig Clear use of figures Correct answer = 0.			1 1 1	[3]
((c)		930 +/-10 N (Accept 905 to 955	for 1 mark)		2	[2]
					Total		[8]
(a)		Mark vertically:	8; 8; 2,6 8; 10; 2,6 (Repeated error penalise on	nce only)	1 1	[2]
(b)		Dot-cross diagram s And correct outer sl (OR H-O-H with cor			1 1	[2]
					Total		[4]
(a)		3			1	[1]
(b)		12 + 3 + 16 + 1 = 32			1 1	[2]
((c)			blecules stronger in methanol rect statements about hydro rbon dioxide)	ogen bonding in	1	[1]
((a)		Mention of surface	area	Total		[4]
ſ	aj		Much greater for a			1 + 1	[2]
((b)	(i)	Dilute the acid (acc	ept add water)		1	
		(ii)	Lower the temperat	ure		1	[2]
					Total		[4]
((a)		(Current in the coil) Attracting the bolt	magnetises the core		1 1	[2]
((b)		It is magnetic And loses its magne	etism easily		1 1	[2]
((c)		No current can flow So bolt remains in s			1 1	[2]
					Total		[6]

Mark Scheme SICAL SCIENCE – JUNE 2004 Tagy is released hove together ot answers which refer to loss of KE one temperature rer a range of temperatures more reactive than magnesium up the activity series) ased	Syllabus 0652 E/slowing down of 1 1 1 1 1 1 1 1 1 1 1	3] [5] [1]
gy is released nove together ot answers which refer to loss of KE one temperature ver a range of temperatures more reactive than magnesium up the activity series)	1 1 Total 1	[3] [5]
ove together ot answers which refer to loss of KE one temperature ver a range of temperatures more reactive than magnesium up the activity series)	1 1 Total 1	[3] [5]
one temperature ver a range of temperatures more reactive than magnesium up the activity series)	1 1 Total 1	[3] [5]
ver a range of temperatures more reactive than magnesium up the activity series)	1 1 Total 1	[3] [5]
up the activity series)	1	
up the activity series)		[1]
ased	1	
universal indicator een	1+1	
explosion/pop	1+1	[5]
	Total	[6]
nent internal	1 1 1 1	[4]
ect unit)	1 2	[3]
ect unit)	1 2	[3]
	Total	[10]
	1 1	[2]
	1 1	[2]
ygen being absorbed h rain water		[4]
	ch haemoglobin (Accept blood) wygen being absorbed ch rain water (rain)	Total The haemoglobin (Accept blood) The haemoglobin (Accept b

					4		
	Pag	e 3	Mark Scheme PHYSICAL SCIENCE – J		Syllabus 0652	10	
			FITSICAL SCIENCE - J	JONE 2004	0032	ap	
D	(a)		н — с — с — он н н н	Ethanol: C — C	ЭН	PapaCo 1	mbrio
			н-с−с<о	Ethanoic acid:	н	1 1	[4]
	(b)		Any TWO from: Fuel, solvent, in	drinks		1 + 1	[2]
					Total		[6]
I	(a)		Ammeter Voltmeter Variable resistor			1 1 1	[3]
	(b)		By changing the resistance The current in the circuit can be o	changed		1 1	[2]
	(c)		Straight line through the origin (OR curve so that R	increases with	1	
			increasing current In both quadrants			1	[2]
			·		Total		[7]
			Acidic			1	
			Non-metal Right			1 1	[3]
			light		Total	•	[3]
	(a)		Filament gets very hot Must not be allowed to oxidise/bu Argon provides inert atmosphere			1+1	[2]
	(b)		High density High melting point Transition part of the Periodic Ta	ANY TW	VO	1 + 1	[2]
					Total		[4]
	(a)	(i)	Negative Attracted to positive collector			1 1	
		(ii)	Electron			1	[3]
	(b)		Deflect rays* Horizontally Deflect rays* Vertically (* can be scored in either part bu	t only once)		1 1 1 1	[3]
	(c)	(i)	Amplitude smaller but frequency			1	
	(-)	(-)	Frequency greater but amplitude Both a good shape			1 1	[3]

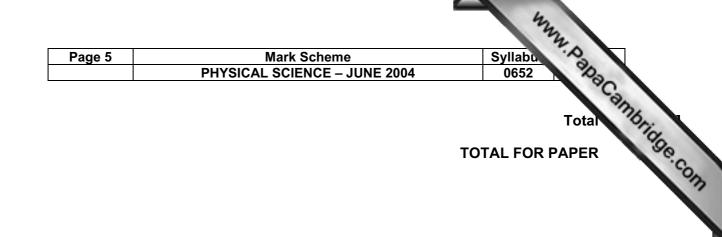
INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/03

PHYSICAL SCIENCE Paper 3 (Extended)


Page 1	Mark Scheme Syllabu '		
	PHYSICAL SCIENCE – JUNE 2004 0652	2	
		Can	
(a)	(average) mass of one atom (of element) (of normal isotopic mixture) compared to 1/12 mass of one atom of carbon-twelve <i>OR</i>	10	idge
	on a scale on which one atom of carbon-twelve has a mass of 12 exactly	1	.co.
(b) (i)	n = m/ M_r OR 5.0/30 Accept 5/30.	1	
	number of moles = 0.167 Accept 1/6, 0.17, 0.16 but not 0.2.	1	[2]
(ii)	(2.0 / 24) number of moles = 0.083	1	[2]
	Accept 1/12. Accept 0.08 only if 2/24 shown.		
(iii)	(answer from (i) ÷ answer from (ii)) number of moles = 2 Accept answer from errors carried forward.	1	[1]
(iv)	$2M + O_2 \rightarrow 2MO$		
	Answer from (iii) must be used in front of M. correct formulae of elements M and O ₂ balanced using answer from (iii)	1 1	[2]
	Total		[9]
(a)		1	-
()	place measuring cylinder under spout and lower object into can (until	1	
	immersed) volume of water displaced into cylinder equals volume of object	1	[3]
(b) (i)	g/cm ³ OR kg/m ³ etc	1	[1]
	Symbols must be correct, as listed in the syllabus	-	
(ii)	density = mass / volume OR 15.4 / 0.8	1	
	density = 19.25 (g/cm ³) numerical answer only	1	[2]
	Accept 19.3 or 19.2 (Also accept 19 because volume given only to 1 sig. fig.)		
(iii)	gold	1	[1]
	Accept error forward from (ii)	•	r.*
(iv)			
\ <i>i</i>	uncertainty of experimental method	1	any two
	uncertainty of experimental readings may not be pure metal	1	two [2]
	(a) (b) (i) (ii) (iv) (a) (b) (i) (ii)	 (b) (i) n = m/M, OR 5.0/30 Accept 5/30. number of moles = 0.167 Accept 1/6, 0.17, 0.16 but not 0.2. (ii) (2.0/24) number of moles = 0.083 Accept 1/12. Accept 0.08 only if 2/24 shown. (iii) (answer from (i) + answer from (ii)) number of moles = 2 Accept answer from errors carried forward. (iv) 2M + O₂ → 2MO Answer from (iii) must be used in front of M. correct formulae of elements M and O₂ balanced using answer from (iii) Total (a) put water into can up to spout place measuring cylinder under spout and lower object into can (until immersed) volume of water displaced into cylinder equals volume of object (b) (i) g/cm³ OR kg/m³ etc Symbols must be correct, as listed in the syllabus (ii) density = mass / volume OR 15.4 / 0.8 density = 19.25 (g/cm³) numerical answer only Accept 19.3 or 19.2 (Also accept 19 because volume given only to 1 sig. fig.) (iii) gold Accept error forward from (ii) (iv) ideas of uncertainty of experimental method uncertainty of experimental method uncertainty of experimental readings 	PHYSICAL SCIENCE - JUNE 2004 0652 (a) (average) mass of one atom (of element) (of normal isotopic mixture) compared to 1/12 mass of one atom of carbon-twelve OR on a scale on which one atom of carbon-twelve has a mass of 12 exactly 1 (b) (i) n = m/M; OR 5.0/30 Accept 5/30. 1 number of moles = 0.167 Accept 1/6, 0.17, 0.16 but not 0.2. 1 (ii) (2.0/24) number of moles = 0.083 Accept 1/12. Accept 0.08 only if 2/24 shown. 1 (iii) (answer from (i) + answer from (ii)) number of moles = 2 Accept answer from errors carried forward. 1 (iv) 2M + O ₂ → 2MO Answer from (iii) must be used in front of M. correct formulae of elements M and O ₂ balanced using answer from (iii) 1 (a) put water into can up to spout place measuring cylinder under spout and lower object into can (until immersed) volume of water displaced into cylinder equals volume of object 1 (b) (i) g/cm³ OR kg/m³ etc 1 (ii) density = mass / volume OR 15.4 / 0.8 density = 19.25 (g/cm³) numerical answer only 1 Accept 19.3 or 19.2 (Also accept 19 because volume given only to 1 sig. fig.) 1 (iii) gend 1 Accept error forward from (ii) 1 1 (iv) ideas of uncertainty of experimental method uncertainty o

Accept explanation in terms of significant figures for one mark.

	2	_	
 Page 2	Mark Scheme Syllabu PHYSICAL SCIENCE – JUNE 2004 0652		
	20	2	
(c)	Mark SchemeSyllabuPHYSICAL SCIENCE – JUNE 2004065285g $\rightarrow 0.085$ kgORequivalentW = mgW = mgORg = W/mAccept with values inserted whether mass is in grams or kilogramsq = 1.65 N/kgcomplete answer	nb.	ida
	Accept with values inserted whether mass is in grams or kilograms		.com
	g = 1.65 N/kg complete answer	1	[3]
	Accept unit m/s ² . Symbols in unit must be correct, as listed in syllabus. Accept 1.6 but not 1.7 because 0.14 / 0.085 = 1.647		
	Total		[12]
(a)	increase to silicon then decrease	1	[1]
	Ignore P & S anomaly. Must mention silicon.		
(b)	strong (forces of attractions between atoms) due to covalent bonding <i>OR</i> giant (tetrahedral) structure	1 1	[2]
(c)	Any symbols used should be correct, as listed in syllabus (i) sodium (ii) phosphorus (iii) magnesium (iv) argon	1 1 1	[2]
(d)	<i>ideas of…</i> sodium ions have +1 charge <u>and</u> magnesium ions have +2 charge ∴ forces of (attraction) in metallic bonding weaker in sodium than magnesium	1 1	[2]
	Comparison must be clear.		
	Total		[9]
(a)	wire connected across voltmeter	1	[1]
	Accept, for this circuit, wire connected across battery. Be tolerant with symbol or drawing to represent this wire		
(b)	R = V/I OR $4.3/2.1$ resistance = 2.05 Ω numerical value (1) unit (1)	1 2	[3]
	Accept 2.0, 2.04 but not 2.1. The mark for the unit Ω is a separate mark.		
(c)	twice the answer from (b)	1	[1]
(d)	<i>Ignore unit. state</i> resistance of <u>shorter</u> wire likely to be more than expected <i>explain</i> shorter wire (less resistance) more current	1 1	
	hotter than longer wire	1	[3]
(e)	Comparison must be clear. large current	1	[3]

		Mary Mary		
L	Page 3	Mark Scheme Syllabo		
		PHYSICAL SCIENCE – JUNE 2004 0652		
	(f)	Mark Scheme Syllabu PHYSICAL SCIENCE – JUNE 2004 0652 oscilloscope OR c.r.o. OR multimeter Total calcium 2882	ambr	10e.co
				17
5	(a) (i)	calcium 2,8,8,2 fluorine 2,7	1 1	[2]
	(ii)	transfer of electrons from calcium atoms to fluorine atoms forming positive ions (Ca ²⁺) and negative ions (F-) that attract	1 1	[2]
	(iii)	CaF ₂	1	[1]
		Do not accept Fl for fluorine.		
	(b)	solid calcium fluoride ions are held in lattice OR cannot move about	1	
	(5)	molten calcium fluoride ions are free to move about	1	
		liquid fluorine molecules are not charged	1	[3]
		Total		[8]
6	(a)	n = 8		[1]
	(b)	speed = distance/time OR time = distance/speed OR time = 80/340 ∴ time = 0.235 s complete answer (1) Accept 0.24 s or 0.23 s but not 0.2 s	1 1	[2]
	(c) (i)	<i>ideas of…</i> start: fast speed of light means negligible delay in seeing smoke stop: slow speed of sound gives enough time for observer to respond	1 1	[2]
	(ii)	decreases possibility of echoes	1	
		which would confuse observer	1	[2]
	(d)	3.5 kHz → 3500 Hz	1	
		$v = f\lambda$ OR $\lambda = v/f$ (accept $c = f\lambda$ or $\lambda = c/f$). Accept with values inserted whether frequency is in kHz or Hz.	1	
		wavelength = 0.097 m complete answer * (1)	1	[3]
		Do not accept 0.1 m.	•	[0]
		* Only the first incorrect or missing unit is penalised		[40]
		Total		[10]
7	(a)	yeast temperature less than 40 °C	1 1	[2]
		Do not accept 'warm' on its own.		
	(b) (i)	fractional distillation both words	1	[1]

Page 4	Mark Scheme Syllabu A		
	PHYSICAL SCIENCE – JUNE 2004 0652	2	
(ii)	Mark Scheme Syllabu PHYSICAL SCIENCE – JUNE 2004 0652 Iabelled sketch of laboratory apparatus to show fractionating column thermometer condenser workable arrangement * *	and 1	109.00
	* showing flask of solution being heated, vapour rising up fractionating column, thermometer in the top of this column with its bulb opposite tube leading down through water-cooled condenser into collecting vessel; the condenser should have water entering and leaving the outer tube correctly. Total		
(\mathbf{a})	thermometer	1	[7]
(a)	thermometer changes do not accept 'expands' equal range	1 1 1 1	
	sensitive do not accept 'accurate'	1	[5]
(b)	<i>examples…</i> liquid-in-glass thermometer volume of liquid depends on temperature		[2]
	accept named liquid, mercury or alcohol.		
	OR thermocouple - e.m.f depends on temperature -		
	Total		[7]
(a)	to remove impurities (from the ore)	1	[1]
	Do not accept 'to form slag' unless 'impurities' are mentioned.		
(b)	Symbols and subscripts should be written correctly.		
	(i) $CaCO_3 \rightarrow CaO + CO_2$		
	formulae (1) (then) balanced (1)	2	
	(ii) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ formulae (1) (then) balanced (1)	2	[4]
	Accept $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$		
(-)	<i>ideas of…</i> zinc is more reactive than iron ∴ when zinc-coating is		
(c)	-	-	
(C)	damaged the iron is still protected however	1	

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 30

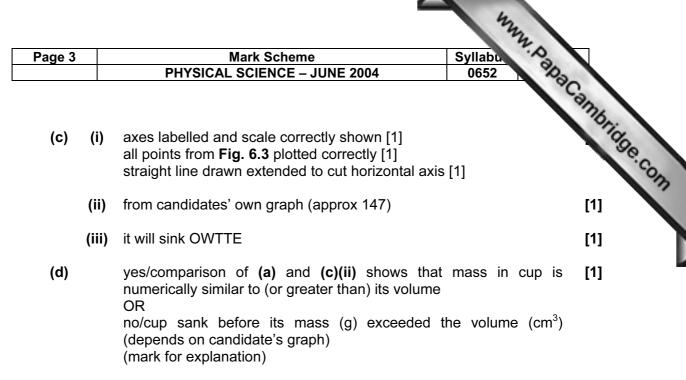
SYLLABUS/COMPONENT: 0652/05

PHYSICAL SCIENCE Practical

Гd	ge 1	Mark Scheme PHYSICAL SCIENCE – JUNE 2004	Syllan 0652	0
(_)	41	·	0052	ap3
	(i)	Value for h within 0.4 mm of supervisor		
	(ii)	Brief description of how volume was found Volume within 10 cm ³ of supervisor sensible volume	Sylla. 0652	2
		Table:		
		Six pairs of values Good spread to include a value equal to 150 cm ³ Values in mm and decreasing with volume of water (Penalise 1 mark when all intervals are exactly the same)		3
(b)		Graph:		
		Axes correctly labelled Sensible scales for plotted points Plotting correct for 4 values		
		Best straight line drawn		4
		Volume correctly read needs evidence of extrapolation Within 10% of recorded volume		2
(c)		Measure water level in cylinder Put in the block and record new level Volume of water displaced calculated is equal to the volu block	me of	3
		DIOCK	Totol	
			Total	[15]
(a)		Gas/vapour burns Limewater milky Brown or charring/smoke/smell		3
(b)		Goes out NOT 'nothing' Limewater milky		2
(c)	(i)	Decolourised		1
	(ii)	UI goes red pH about 1-4 Acid present		3
(d)		Blue/green pH about 8-10 No mark for conclusion		2
(e)		Effervescence OR gets cold		1
(f)		Brief description		1 2

INTERNATIONAL GCSE

MARK SCHEME


MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/06

PHYSICAL SCIENCE Alternative to Practical

Page 1		Mark Schei		Syllaba	
		PHYSICAL SCIENCE	– JUNE 2004	0652	2
(a)		2.6 cm, 5.8 cm correctly en	tered in Fig. 1.2 (no tol	Syllabo 0652 erance) ed in millimetres	ambr
(b)		displacement increases as	load increases OWTTE	E	[1]
(c)		repeat experiment (and ave	erage)/use a ruler mark	ed in millimetres	[1]
(d)	(i)	thicker beam gives smaller	displacement OWTTE		[1]
	(ii)	shorter beam gives smaller	displacement OWTTE		[1]
(e)		hang object on beam [1] read displacement [1] compare result with data fro by plotting a graph of the da	• • • •		[4]
				Тс	otal [10]
2 (a)		1.8V [1], 150mA 2.4V [1], 250mA (1 ma +/- 0.1V, +/- 10mA	ark for both current read	dings)	[3]
(b)		2 points correctly plotted [2 line drawn (can be straight	-		[3]
(c)	(i)	the bulb becomes brighter	as resistance decrease	S	[1]
	(ii)	the filament of the bulb mel	Ited OWTTE		[1]
(d)		no, since it is not a straight OR	line/V and I are not pro	portional	[1]
		yes, graph is a straight line	/(they are proportional)		
				т	otal [9]
6 (a)	(i)	53.4g, 60.0g (mus	st say 60.0), no toleranc	e [2]	[3]
	(ii)	6.6g (ecf) [1]			
(b)		blue litmus (U.I) paper turn	s red in the gas (reject	add indicator)	[1]
(c)	(i)	56.8g (no tolerance)			[1]
	(ii)	3.2g (ecf) (both	correct for 1 mark)		
(d)		evaporate to remove some leave the solution to cool [1 OR evaporate solution [1] over a boiling water bath [1]		[2]

Page 2 Mark Scheme Syllabit (e) (i) 62.9g, (no tolerance) [1] 0652 (ii) 9.5g (ecf) [1] (ii) 9.5g (ecf) [1] (f) some copper nitrate left in the solution during crystallisation/water of crystallisation was lost/copper nitrate decomposed/other suitable answer based on experimental details Total [10] 4 (a) gas C: 8s [3] gas D: 3s gas D: 3s [3] gas C: because it took the least time to fall OWTTE [1] (c) heavier (denser) gases fall, lighter (less dense) gases rise [1] [2] gases more dense (lighter) than air rise [1] gases more dense (lighter) than air rise [1] [2] (d) to keep the experiment fair/so that the results are accurate [1] (ii) gas A rose more quickly/it has the least density [1] (iii) test with a lighted spil/burn in air [1] [2] gas carbon dioxide/carbonate [1] box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (b) reaction vessel with delivery tube [1] [3] box 2(a) carbon dioxide (confirmed [1] box 3 turned from green [1] to red [1]	Pa	age 2		Mark Scheme Syllabu	
of crystallisation was lost/copper nitrate decomposed/other suitable answer based on experimental details Total [10] (a) gas C: 8s [3] gas D: 3s gas E: 12s. (no tolerance) [1] (b) gas C because it took the least time to fall OWTTE [1] (c) heavier (denser) gases fall, lighter (less dense) gases rise [1] [2] gases less dense (lighter) than air rise [1] gases more dense (heavier) than air rise [1] [2] (d) to keep the experiment fair/so that the results are accurate [1] (e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spill/burn in air [1] [2] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourles (clear) to cloudy/milky [1] [7] (b) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 3 (b) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 4 turned yellow/orange (reject orange) [1] (b) reaction vessel with delivery tube [1] [3] gas collected over water or in a syringe [1] (a) <t< th=""><th></th><th></th><th></th><th>PHYSICAL SCIENCE – JUNE 2004 0652</th><th>~</th></t<>				PHYSICAL SCIENCE – JUNE 2004 0652	~
of crystallisation was lost/copper nitrate decomposed/other suitable answer based on experimental details Total [10] (a) gas C: 8s [3] gas D: 3s gas E: 12s. (no tolerance) [4] (b) gas C because it took the least time to fall OWTTE [1] (c) heavier (denser) gases fall, lighter (less dense) gases rise [1] [2] gases less dense (lighter) than air rise [1] gases more dense (heavier) than air fall [1] [2] (d) to keep the experiment fair/so that the results are accurate [1] (e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spil//burn in air [1] [2] gas explodes (pop!) [1] Total [10] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourless (clear) to red (rung as will not support combustion/no oxygen/may be nitrogen [1] box 2(a) carbon dioxide confirmed [1] box 2(a) carbon dioxide confirmed [1] box 4 turned yellow/orange (reject orange) [1] [3] (b) reaction vessel with delivery tube [1] [3] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] Total [10] (a)					amb.
of crystallisation was lost/copper nitrate decomposed/other suitable answer based on experimental details Total [10] (a) gas C: 8s [3] gas D: 3s gas C: los [3] gas C because it took the least time to fall OWTTE [1] (c) heavier (denser) gases fall, lighter (less dense) gases rise [1] [2] gases less dense (lighter) than air rise [1] gases more dense (heavier) than air rise [1] [2] (d) to keep the experiment fair/so that the results are accurate [1] (e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spil//burn in air [1] [2] (iii) test with a lighted spil//burn in air [1] [7] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourles (clear) to cloudy/milky [1] [7] (a) box 1 colourles (clear) to cloudy/milky [1] [7] (b) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] [3] gas collected over water or in a		(e)	(i)	62.9g, (no tolerance) [1]	3
of crystallisation was lost/copper nitrate decomposed/other suitable answer based on experimental details Total [10] (a) gas C: 8s [3] gas D: 3s gas E: 12s. (no tolerance) [1] (b) gas C because it took the least time to fall OWTTE [1] (c) heavier (denser) gases fall, lighter (less dense) gases rise [1] [2] gases less dense (lighter) than air rise [1] gases more dense (heavier) than air rise [1] [2] (d) to keep the experiment fair/so that the results are accurate [1] (e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spill/burn in air [1] [2] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourles (clear) to cloudy/milky [1] [7] (b) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 3 (b) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 4 turned yellow/orange (reject orange) [1] (b) reaction vessel with delivery tube [1] [3] gas collected over water or in a syringe [1] (a) <t< td=""><td></td><td></td><td>(ii)</td><td>9.5g (ecf) [1]</td><td></td></t<>			(ii)	9.5g (ecf) [1]	
 (a) gas C: 8s gas D: 3s gas E: 12s. (no tolerance) (b) gas C because it took the least time to fall OWTTE [1] (c) heavier (denser) gases fall, lighter (less dense) gases rise [1] gases less dense (lighter) than air rise [1] gases less dense (lighter) than air rise [1] gases more dense (heavier) than air fall [1] (d) to keep the experiment fair/so that the results are accurate [1] (e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spill/burn in air [1] [2] gas explodes (pop!) [1] Total [10] (a) box 1 colourless (clear) to cloudy/milky [1] [7] carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] (b) reaction vessel with delivery tube [1] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] (a) (i) use a pipette/dropper/burette [1] [2] [2] [147 (ecf) [1] 		(f)		of crystallisation was lost/copper nitrate decomposed/other suitable	[1]
 (b) gas D: 3s gas E: 12s. (no tolerance) (b) gas C because it took the least time to fall OWTTE [1] (c) heavier (denser) gases fall, lighter (less dense) gases rise [1] gases less dense (lighter) than air rise [1] gases more dense (heavier) than air rise [1] (d) to keep the experiment fair/so that the results are accurate [1] (e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spill/burn in air [1] (2] (a) box 1 colourless (clear) to cloudy/milky [1] (a) box 1 colourless (clear) to cloudy/milky [1] (b) 1 colourless (clear) to cloudy/milky [1] (c) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] (b) reaction vessel with delivery tube [1] (gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] Total [10] (a) (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] (iii) 103 (no tolerance) [1] 				Tot	al [10]
gas E: 12s. (no tolerance) (b) gas C because it took the least time to fall OWTTE [1] (c) heavier (denser) gases fall, lighter (less dense) gases rise [1] [2] gases less dense (lighter) than air rise [1] gases more dense (heavier) than air fall [1] [2] (d) to keep the experiment fair/so that the results are accurate [1] (e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spill/burn in air [1] [2] (iii) test with a lighted spill/burn in air [1] [2] (a) box 1 colourless (clear) to cloudy/milky [1] [7] carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] [3] (b) reaction vessel with delivery tube [1] [3] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] [2]	1	(a)		•	[3]
(c) heavier (denser) gases fall, lighter (less dense) gases rise [1] gases less dense (lighter) than air rise [1] gases more dense (heavier) than air rise [1] gases more dense (heavier) than air fall [1] [2] (d) to keep the experiment fair/so that the results are accurate [1] (e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spill/burn in air [1] gas explodes (pop!) [1] [2] Total [10] 5 (a) box 1 colourless (clear) to cloudy/milky [1] carbon dioxide/carbonate [1] box 2(a) carbon dioxide confirmed [1] box 2(b) carbon dioxide confirmed [1] box 2(b) carbon dioxide confirmed [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] [3] (b) reaction vessel with delivery tube [1] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] [3] Total [10] 5 (a) (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] 147 (ecf) [1] [2]					
gases less dense (lighter) than air rise [1] gases more dense (heavier) than air fall [1] (d) to keep the experiment fair/so that the results are accurate (i) gas A rose more quickly/it has the least density (ii) test with a lighted spill/burn in air [1] (iii) test with a lighted spill/burn in air [1] (ii) test with a lighted spill/burn in air [1] (iii) test with a lighted spill/burn in air [1] (iii) test with a lighted spill/burn in air [1] (iii) test with a lighted spill/burn in air [1] (iii) test with a lighted spill/burn in air [1] (iii) test with a lighted spill/burn in air [1] (iii) test with a lighted spill/burn in air [1] (iii) to clourless (clear) to cloudy/milky [1] (iii) to clourless (clear) to cloudy/milky [1] (iii) to clour less (clear) to cloudy/milky [1] (iii) to clour dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 4 turned yellow/orange (reject orange) [1] (b) reaction vessel with delivery tube [1]		(b)		gas C because it took the least time to fall OWTTE	[1]
(e) (i) gas A rose more quickly/it has the least density [1] (ii) test with a lighted spill/burn in air [1] [2] gas explodes (pop!) [1] Total [10] (ii) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (a) box 1 colourless (clear) to cloudy/milky [1] [7] (b) carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 2(b) carbon dioxide confirmed [1] box 4 turned yellow/orange (reject orange) [1] [3] (b) reaction vessel with delivery tube [1] [3] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] [2] (iii) 103 (no tolerance) [1] [2]		(c)		gases less dense (lighter) than air rise [1]	[2]
 (ii) test with a lighted spill/burn in air [1] [2] gas explodes (pop!) [1] Total [10] (a) box 1 colourless (clear) to cloudy/milky [1] [7] carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] (b) reaction vessel with delivery tube [1] [3] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] (a) (i) use a pipette/dropper/burette [1] [2] 147 (ecf) [1] 		(d)		to keep the experiment fair/so that the results are accurate	[1]
gas explodes (pop!) [1] Total [10] 5 (a) box 1 colourless (clear) to cloudy/milky [1] [7] carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] [7] box 2(a) carbon dioxide confirmed [1] box 2(b) carbon dioxide confirmed [1] [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] [3] (b) reaction vessel with delivery tube [1] [3] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] 5 (a) (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] [2] 147 (ecf) [1] [2]		(e)	(i)	gas A rose more quickly/it has the least density	[1]
 (a) box 1 colourless (clear) to cloudy/milky [1] [7] carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] (b) reaction vessel with delivery tube [1] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] (a) (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] 147 (ecf) [1] 			(ii)		[2]
 carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 3 turned from green [1] to red [1] box 4 turned yellow/orange (reject orange) [1] (b) reaction vessel with delivery tube [1] [3] gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] Total [10] (a) (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] [2] 				Tot	al [10]
 gas collected over water or in a syringe [1] means of measuring gas volume/graduations shown [1] Total [10] (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] 147 (ecf) [1] 	5	(a)		carbon dioxide/carbonate [1] box 2(a) carbon dioxide (suspected)/gas will not support combustion/no oxygen/may be nitrogen [1] box 2(b) carbon dioxide confirmed [1] box 3 turned from green [1] to red [1]	[7]
6 (a) (i) use a pipette/dropper/burette [1] (ii) 103 (no tolerance) [1] [2] 147 (ecf) [1] [2]		(b)		gas collected over water or in a syringe [1]	[3]
(ii) 103 (no tolerance) [1] [2] 147 (ecf) [1]				Tot	al [10]
147 (ecf) [1]	6	(a)	(i)	use a pipette/dropper/burette	[1]
(b) 28mm, 14mm (+/- 1mm) [2]			(ii)		[2]
		(b)		28mm, 14mm (+/- 1mm)	[2]

Total [11]