Centre Number Candidate Number Name

www.PapaCambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICAL SCIENCE

0652/02

For Examiner's Use

1

2

3

4

5

7

13

Total

Paper 2

October/November 2005

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

8 9 10 If you have been given a label, look at the details. If any details are incorrect or 11 missing, please fill in your correct details in the space given at the top of this page. 12

Stick your personal label here, if provided.

1 (a) A glider is an aeroplane without an engine. Glider pilots use columns of rising was to lift their gliders to a greater height, as shown in Fig. 1.1.

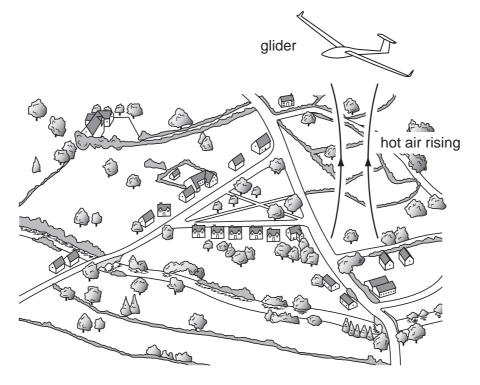


Fig. 1.1

	(1)	name the process which causes the warm air to rise.	
	(ii)	Explain why the warm air rises.	
			[3]
(b)		warm air sometimes carries water vapour higher into the atmosphere where nges to small water drops to form clouds.	; it
	Nar	ne the process when water vapour turns to liquid.	
			[1]

www.PapaCambridge.com (c) As the water drops get larger they begin to fall. Fig. 1.2 shows a speed – time get the fall of one of the water drops.

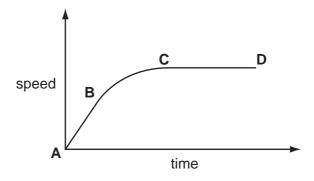
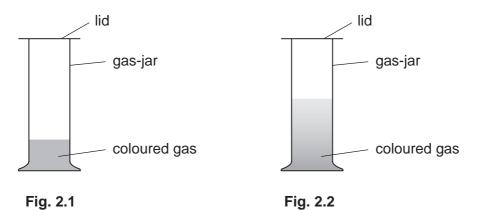


Fig. 1.2


(i)	Describe the motion of the water drop between points A and B .
(ii)	Describe the motion of the water drop between points C and D .

[3]

[1]

2 A coloured gas is put into the bottom of a gas-jar of air. The lid is quickly replaced on This is shown in Fig. 2.1.

After several minutes the coloured gas can be seen halfway up the jar. This is shown in Fig. 2.2.

(a)	Name this proces	s of one gas	mixing slov	vly with anothe	r

(b) The molecules of the coloured gas move about quickly yet the process of mixing with

the air is very slow.

Explain why the mixing is slow.

- 3 The properties of iron can be changed by the controlled use of additives to form steel alloys.
 - (a) State one use of mild steel.

State **one** use of stainless steel.

[2]

	5	For
b)	A piece of mild steel in everyday use is protected with paint. Stainless steel does not need this protection. Explain this difference.	Examino Use
		[2]
	a coal-fired power station coal is burnt in a furnace. This heats water to provide steam re a generator.	ı to
(a)	Complete the sentences below to explain the energy changes.	
	In the furnace energy of the coal is converted to	o
	energy in the steam. This is then converted into	
	energy at the generator.	[3]
	other method of obtaining steam to drive a generator is to pump water deep into und. The water is heated by hot rocks.	the
(b)	(i) What name is given to this type of power station?	
	(ii) State one advantage of this method over the coal-fired power station.	
		[2]
(c)	Explain how the generator is driven in a hydroelectric power station. In your answerefer to relevant energy changes.	ver
		[2]

www.PapaCambridge.com (a) A method to separate and analyse mixtures uses a vertical strip of paper dippin 5 solvent. (i) Name this method of separating mixtures. (ii) Some experiments using this method require a locating agent to show the positions of the components. Explain why a locating agent may be required. (b) Bitumen is used to make roads. Describe how bitumen is obtained from the mixture of hydrocarbons in crude oil (petroleum).

[1]

6 Fig. 6.1 shows the electromagnetic spectrum.

. 6.1 shows the	electromaç	gnetic specti	7 rum.			WWW. Papal	For Examiner's Use
radio waves	micro waves	infra red	visible	Р	X-rays	gamma rays	dinnbridge com
					<u> </u>		

increasing frequency

	Fig. 6.1	
(a)	Name the type of radiation found in the section labelled P .	
(b)	State what happens to the speed of electromagnetic radiation, in a vacuum, as frequency of the radiation increases.	the
		[2]

(c) The photograph in Fig. 6.2 shows a replacement joint in a person's arm.

Fig. 6.2

	Maine the part of the electromagnetic spectrum used to take this photograph.				
		[1]		
(d)	Another method of obtaining images of internal organs is to use sound was frequency above the human threshold of hearing.	aves	O [†]		
	State the maximum frequency sound that a human can hear.				

	en ethene, C ₂ H ₄ , reacts with hydrogen in an addition reaction, an alkane is for Name this alkane.	
		20
(a) Wh	en ethene, C ₂ H ₄ , reacts with hydrogen in an addition reaction, an alkane is for	dh
(i)	Name this alkane.	10
		[1]
(ii)	Draw a diagram to show the structure of this alkane.	
		[1]
(h) \//⊦	en ethene, C_2H_4 , reacts with steam in an addition reaction, an alcohol is formed.	
(i)	Name this alcohol.	
		[1]
(ii)	Draw a diagram to show the structure of this alcohol.	
		[1]
(c) Wh	en ethene, C_2H_4 , reacts with itself in an addition reaction, a polymer is formed.	
(i)	Name this polymer.	
		[1]
(ii)	Draw a diagram to show the structure of this polymer.	
. ,		
		[1]

8

(a)	Describe how you would carry out an experiment to find the magnetic field around a bar magnet.	0
		[4]
(b)	On Fig. 8.1 draw the magnetic field pattern of the bar magnet.	
Γ		
	S N	

Fig. 8.1

[3]

[2]

(a) Chlorine has two isotopes, $^{35}_{17}$ Cl and $^{37}_{17}$ Cl. 9

a)	Chlorine has two isotopes, $^{35}_{17}$ C Complete Fig. 9.1 for these isoto		www.Papac	anne
		³⁵ / ₁₇ C <i>l</i>	37 C <i>l</i>	
	number of protons in nucleus	17		
	number of neutrons in nucleus		20	
	arrangement of electrons in shells in the atom			

Fig. 9.1 [3]

(b) Draw a diagram to show the covalent bonding in a molecule of hydrogen chloride, HCl

(c)	(i)	Describe the formation of each of the ions in sodium chloride, NaCl, from elements.	the
			[2]
	(ii)	Explain how these ions are held together in the compound.	

(d)	11 Explain why sodium chloride conducts electricity when liquid but not when solid.	Cann	For Examiner's Use
		 [2]	Se.COM
(e)	Describe a chemical test for the chloride ion in solution. test		1
	result	[2]	

			The state of the s
			12 A. D.
10	The	nob	le gas, radon, is radioactive. Radon nuclei decay by emitting alpha-particles.
	(a)	(i)	le gas, radon, is radioactive. Radon nuclei decay by emitting alpha-particles. Explain what is meant by the term <i>noble gas</i> .
		(ii)	Explain what is meant by the term <i>alpha-particle</i> .
		(11)	Explain what is meant by the term alpha-particle.
			[3]
			[0]
	(b)	Cor	nplete the equation which shows the decay of a nucleus of radon-220.
			$^{220}_{86}$ Rn \longrightarrow Po + $^{\cdots}\alpha$ (alpha)
			[2]
	(c)		ample consists of 36.0 μg of radon-220. After a period of 3 minutes only 4.5 μg of on-220 remained.
		Cal	culate the half-life of radon-220. Show your working.
			half-life = minute(s) [3]
11			monoxide and oxides of nitrogen are common pollutants of air.
	Des		e how each pollutant is formed.
		cart	oon monoxide
		•••••	
		OXIC	les of nitrogen
			[4]

	the state of the s	
	13	\
2 (a) (i)	State the main method to obtain calcium oxide (lime) from calcium can (limestone). Complete the equation for this process.	Calmbri
		[1]
(ii)	Complete the equation for this process.	
	CaCO ₃ +	
		[2]
(iii)	The energy required to break the bonds in calcium carbonate is greater than energy released when the products are formed.	the
	What does this show about the total energy change in the reaction?	
		[1]
(iv)	Describe a test to identify the gas produced in this process.	
` ,	test	
	result	[2]
(b) Cal	cium hydroxide (slaked lime) is used to treat acidic industrial waste products.	
Naı	me the main chemical process involved in this treatment.	
		[1]

13 Fig. 13.1 shows two types of switch that can be used to control an electric light.

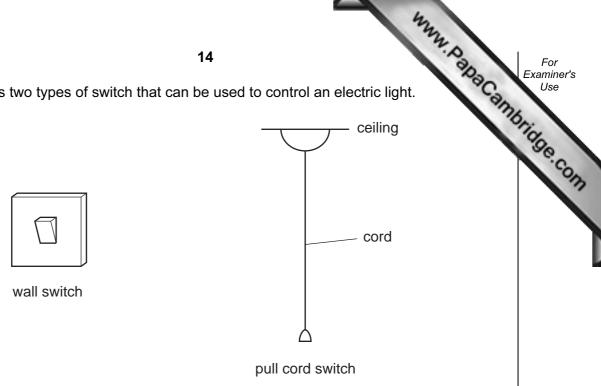


Fig. 13.1

(a)	Explain why a pull-cord switch, not a wall switch, should always be used in a bathroor shower-room.	om
		[3]

(b) Fig. 13.2 shows part of a circuit that could be used to operate lights in a room.

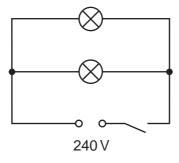


Fig. 13.2

The two lamps are identical and each takes a current of 0.25 A.

(i) Calculate the resistance of each lamp. Show your working and include the unit.

resistance =

(ii) What is the total current taken from the supply when both lamps are switch

www.PapaCambridge.com current A [1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

							Gro	Group								
=											=	≥	>	>	\	0
						- I										4 H
						Hydrogen 1										Helium 2
6							1				1	12	14	16	19	20
Be											Ω	ပ	z	0	щ	Ne
Jeryllium											Boron 5	9	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
24											27		31	32	35.5	40
Mg											Ν	Si	<u> </u>		CI	Ā
Magnesium 12											Aluminium 13	4	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
45 48	48		51	52	55		59	59	64	65	70	73		79		84
	F		>	ပ်		Бe	රි	Z	ວັ	Zu	Ga	Ge	As	Se		궃
Titanium 22	Titanium 22		Vanadium 23	Chromium 24	Manganese 25	97	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	33	Selenium 34	35	Krypton 36
89 91	91		93	96		101	103		108	112		119		128	127	131
Y	Zr		<u>Q</u>	Mo	ည	Ru	R	Pd	Ag	පු		Sn	Sp	<u>e</u>	Ι	Xe
Strontium Yttrium Zirconium N 38 39 40 41	Zirconium 40		Niobium 11	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	4	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
139 178	178		181		186	190	192		197	201		207	209			
Ξ	Ξ		Та	>	Re	os	Ļ	₹	Ρn	£	11	Pp	Ξ	Po	Αt	Rn
Lanthanum Hafnium 57 * 72	um Hafnium 72		ntalum	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83		Astatine 85	86
	27															
Ra Ac	 															
Radium Actinium 88 89																
		L														

*58-7	1 Lanthan	*58-71 Lanthanoid series	140	141	144	Ċ
00.17	90-103 Actinoid series	d corion	3	ב	5	_
-06		a selles	Cerium	Praseodymium	Neodymium	Prome
			58	59	09	61
	m	a = relative atomic mass	232		238	
Key	×	X = atomic symbol	Ħ	Ра	-	Z
	4	h - proton (otomic) number	Thorium	Protactinium	Uranium	Neptr
	Ω	D = protori (atorriic) riumber	06	91	92	93

	www.	
175 Lu Lutetium 71	Lr Lawrencium 103	Dapa Cambridge Com
173 Yb Ytterbium 70	Nobelium 102	die com
169 Tm Thulium	Md Mendelevium 101	
167 Er Erbium 68	Fm Fermium 100	L.
165 Ho Holmium 67	ES Einsteinium 99	(r.t. p.).
Dy Dysprosium 66	Californium 98	pressure
159 Tb Terbium 65	BK Berkelium 97	ature and
157 Gd Gadolinium 64	Cm Curium	24 dm³ at room temperature and pressure (r.t.p.).
152 Eu Europium 63	Am Americium 95	n³ at roor
Sm Samarium 62	Pu Plutonium 94	
Pm Promethium 61	Np Neptunium 93	of any ga
Neodymium 60	238 U Uranium 92	one mole
Pr Praseodymium 59	Pa Protactinium 91	The volume of one mole of any gas is
140 Ce Cerium	232 Th Thorium	The v

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).