Centre Number Candidate Number Name

www.PapaCambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICAL SCIENCE

0652/02

Paper 2 (Core)

October/November 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	niner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

[1]

[2]

Fig. 1.1

(ii) Calculate the relative molecular mass, M_r , of **ethanol**, C_2H_6O . Show your working.

$$M_{\rm r} =$$
 [2]

(iii) Complete the diagram in Fig.1.2 for ethanoic acid, C₂H₄O₂.

Fig. 1.2

- **(b)** Ethanol, C₂H₆O, can be used as a fuel.
 - (i) Balance the following chemical equation for the products of the complete combustion of ethanol.

$$C_2H_6O + 3O_2 \longrightarrowCO_2 +H_2O$$
 [1]

(ii) Describe a chemical test for the carbon dioxide produced.

test result [2]

(iii) Describe a chemical test for the water produced.

test

For Examiner's Use

(6)	ethanoic acid in a beaker.	ding
	Suggest how the pH number of the liquid in the beaker changes.	Tage
		[2]

2 (a) Look at the Periodic Table on page 16.

State the number of electrons in the outer shell of an atom of	State the number of	f electrons in	the outer sh	ell of an atom of
---	---------------------	----------------	--------------	-------------------

(i) the alkali metal caesium, Cs,

www.PapaCambridge.com (ii) the halogen astatine, At.

(b) Describe the formation of each of the ions in caesium astatide, CsAt, from the atoms of caesium and of astatine.

[2]

(c) A molecule of chlorine, Cl_2 , has a single covalent bond between the two atoms. A molecule of astatine, At₂, has similar bonding.

Draw a diagram to show the bonding in a molecule of astatine, At₂.

Show only the outer electrons.

3 Fig. 3. 1 shows part of a gas thermostat used in an oven.

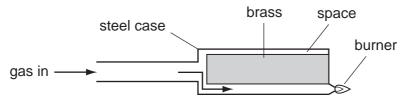


Fig. 3.1

(,	Explain why less gas enters the burner as the temperature in the oven gets higher.
	[2]

(b) Fig. 3.2 shows a loaf of bread cooking in the oven.

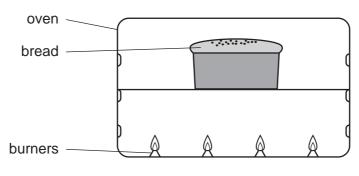


Fig. 3.2

Thermal energy is transferred from the burning gas to the bread by conduction, convection and radiation.

Explain, with reference to this example, what is meant by

(1)	conduction,	
(ii)	convection,	
iii)	radiation.	
		[4]

www.PapaCambridge.com A meteorite is a piece of rock which comes from the outer part of the solar systemeters the Earth's atmosphere.

Fig. 4.1 shows the speed of the meteorite as it approaches and finally strikes the Earth.

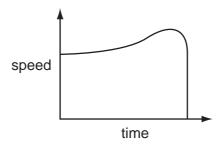


Fig. 4.1

(a)	As furtl	the meteorite approaches the Earth it is travelling at a high speed and accelerather.	es
	(i)	Name the type of energy it has due to its motion.	[1]
	(ii)	Suggest why it accelerates as it approaches the Earth.	
		[2	2]
(b)	Wh	en the meteorite enters the Earth's atmosphere it slows down rapidly.	
(b)	Wh(i)	Mark, with an X , the point on the graph at which the meteorite enters the Earth	n's [1]
(b)		Mark, with an X , the point on the graph at which the meteorite enters the Earth	
(b)	(i)	Mark, with an X , the point on the graph at which the meteorite enters the Earth atmosphere.	
(b)	(i)	Mark, with an X , the point on the graph at which the meteorite enters the Earth atmosphere.	
(b)	(i)	Mark, with an X , the point on the graph at which the meteorite enters the Earth atmosphere. Using scientific terms explain why the meteorite slows down.	
	(i)	Mark, with an X , the point on the graph at which the meteorite enters the Earth atmosphere. Using scientific terms explain why the meteorite slows down.	[1]

5 A boy holds a long rope at one end and moves it sharply up and down to send wave the rope. Fig. 5.1 shows the waves moving along the rope.

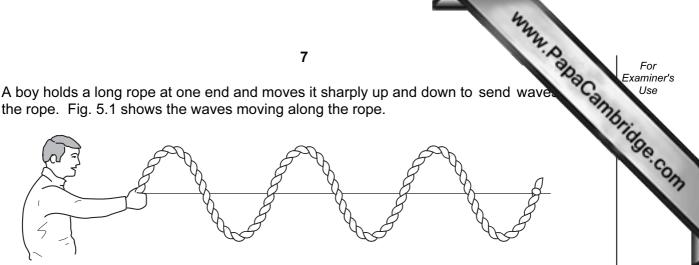


Fig. 5.1

(a) Mark on the diagram (i) the wavelength of the wave and label it λ , (ii) the amplitude of the wave and label it A. [2] (b) Explain how the boy changes the movement of his hand to (i) increase the amplitude of the wave, (ii) increase the frequency of the wave. (c) When a guitar string is plucked a sound is heard. Explain how the sound is produced.

6	(a)	Balloons are used to lift radio equipment high in the atmosphere to measure placement temperature and ozone levels.
		Explain why helium, not hydrogen, is used to fill these balloons.
		[2]
	(b)	Filament lamps have a thin wire of tungsten that glows white hot when connected to the electrical supply.
		Explain why argon, not air, is used to fill these lamps.
		[2]
	(c)	An atom of helium has the notation 4_2 He.
		An atom of argon has the notation $^{40}_{18}$ Ar.

notation of atom	⁴ ₂ He	⁴⁰ ₁₈ Ar
number of protons in nucleus	2	
number of neutrons in nucleus		22
arrangement of electrons in shells in the atom	2	

Complete Fig. 6.1 for these atoms.

Fig. 6.1

[3]

7 Fig. 7.1 shows a circuit. The e.m.f. of the battery is 12V.

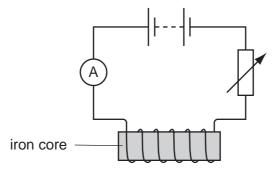


Fig. 7.1

(a) What is the total resistance in the circuit when the ammeter reads 2A?

Show your working and state the unit.

[2]

(b) Two soft iron nails are attracted to the core as shown in Fig. 7.2.

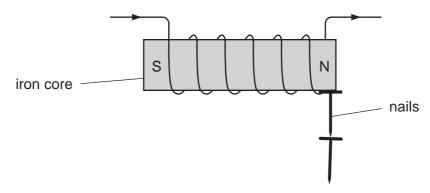


Fig. 7.2

(i) Complete Fig. 7.2 to show the poles induced on the nails.

(ii) Explain what happens to the nails when the current is gradually reduced to zero.

	the state of the s	
	Iron, Fe, is described as a <i>transition</i> element. State two properties of iron that are common to transition elements. 1	1
(a)	Iron, Fe, is described as a <i>transition</i> element.	3
	State two properties of iron that are common to transition elements.	13
	1.	•
	2	[2]
(b)	Iron reacts with dilute hydrochloric acid.	
	Fe(s) + 2HC $l(aq)$ FeC $l_2(aq)$ + H $_2(g)$	
	State two ways of increasing the speed of this reaction.	
	1.	
	2	[2]
(c)	Iron goes rusty in damp air.	
	State two ways to prevent iron from rusting.	
	1.	
	2	[2]
(d)	Rust is a form of iron oxide. When this is heated in carbon monoxide, iron and carbo dioxide are formed.	on
	Explain this reaction in terms of oxidation and reduction.	
	oxidation	
	reduction	
		[2]

9 An experiment is done to measure the half-life of an isotope of neon. The results are in Fig. 9.1

								4	4	
				11					N. Da	For
experiment is don ig. 9.1	e to me	easure t	he half	life of a	an isoto	pe of ne	eon. Th	e result	s are	For Examiner's Use
count rate/Bq	180	150	125	104	85	70	60	51	42	The state of
time/s	0	10	20	30	40	50	60	70	80	COM
				Fig. 9.1		•	•	•	•	

Fig. 9.1

- (a) The first four points are already plotted on the grid in Fig. 9.2.
 - (i) Plot the remaining points.
 - (ii) Draw a smooth curve through the points.

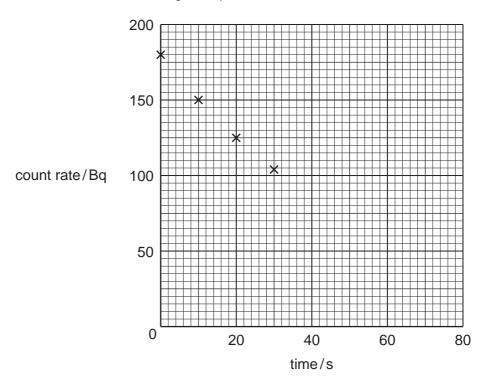


Fig. 9.2

(b) Use the graph to find the half-life of the isotope.

(c) The isotope decays by emission of a beta-particle (β -particle). Complete the equation to show the decay.

$$^{23}_{10}$$
Ne \longrightarrow Na + $^{10}_{10}$ β

[2]

[3]

		Energy is needed to convert a boiling liquid, at constant temperature, into a gas. Use the kinetic particle theory of matter to explain this fact.
40	(-)	Francis and data assumed a halling liquid at a patent town part up into a series
10	(a)	Energy is needed to convert a boiling liquid, at constant temperature, into a gas. Use the kinetic particle theory of matter to explain this fact.
		[2]
	(b)	Explain why evaporation from the surface of a liquid causes the temperature of the remaining liquid to cool.
		[2]
	(c)	
		liquid P liquid Q
		heat heat
		Fig. 10.1
		Liquid P continues to boil at a constant temperature.
		Liquid Q continues to boil at a temperature that increases with time.
		Explain these observations.
		[2]
		(ii) Name one example of a liquid that behaves like liquid Q .
		[1]

www.PapaCambridge.com 13 **11** (a) Describe how a polythene rod can be charged. **(b)** Fig. 11.1 shows a negatively charged polythene rod suspended by an insulating thread. insulating thread polythene rod Fig. 11.1 State what happens when (i) a negatively charged rod is brought up to end A, (ii) a positively charged acetate rod is brought up to end A, (iii) a positively charged acetate rod is brought up to end B,

(iv) an uncharged glass rod is brought up to end A.

[4]

BLANK PAGE

www.PapaCambridge.com

15

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

								Gre	Group								
_	=								<u> </u>			=	≥	>	>	=	0
	_						Hydrogen										4 H
							1										2
7	6											11	12	14	16	19	20
=												Ω	ပ	z	0	ш	Ne
2 Lithium	Beryllium 4	E										Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27			32	35.5	40
Na	Mg	_										Ν			တ	CI	Ā
Sodium 11	≥ 4	- En										Aluminium 13	4	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
88	40	45	48	51	52	55	56	59		64		70	73	75	62	80	84
¥	Ca	လွ	F	>	ဝံ	Mn	Fe	රි		చె		Ga	Ge	As	Se		궃
Potassium 19	Calcium 20	m Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	ε	Arsenic 33	Selenium 34	Φ	Krypton 36
82	88	88	91	93	96		101	103	106	108	112			122	128		131
Rb	Š	>	Zr	Q N	Mo	ည	Ru	Rh	Pd	Ag	ပ္ပ	In	Sn	Sb	<u>e</u>	Н	Xe
Rubidium 37	Strontium 38	m Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	n Technetium 43	Ruthenium	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
133			178	181		186	190	192	195	197	201						
Cs			Ξ	Тa	>	Re	Os	ŀ	₹	Αn	£	11	Pb	Β	Ъ	¥	Ru
Caesium 55	Barium 56	Lanthanum 57	* Hafnium	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82		Polonium 84	Astatine 85	Radon 86
	226	227															
正																	
Francium 87	Radium 88	n Actinium †															
*58-71	l anthan	*58-71 anthanoid series		140	141	144		150	152	157	159	162	165	167	169	173	175
100-100	30-7 Framinanold seme †90-103 Artinoid series	old series		ပီ	ቯ	PR	Pm	Sm	Ē	<u>6</u>	₽ P	۵	운	ш	Tm		3
		SDIDS D		Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Ę	Holmium 67	Erbium 68		Ytterbium 70	Lutetium 71
	Ø	a = relative atomic mass	nic mass	C		occ											

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

www.papaCambridge.com

Md Mendelevium 101

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

Key