

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Middle con

	Ī

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/03

Paper 3 (Extended)

October/November 2007

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 14 printed pages and 2 blank pages.

Fig. 1.1 shows the speed of a car as it moves along a straight, level track. 1

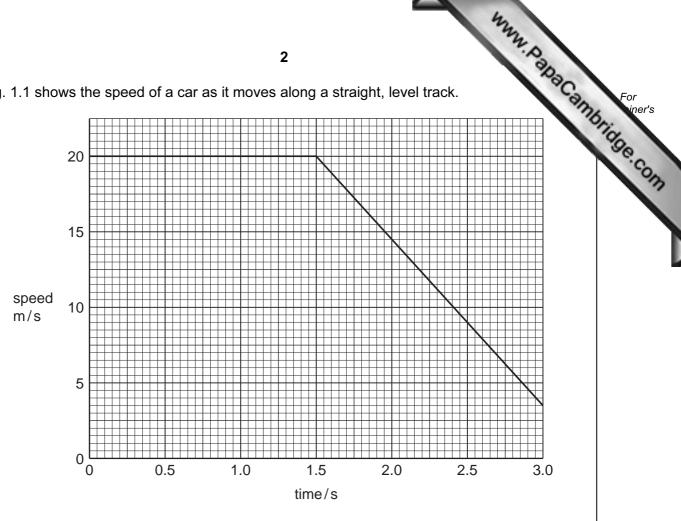


Fig. 1.1

(a) During the first 1.5 s the car travels at a constant speed. State the overall force on the car during this period of time.

(b) Calculate the acceleration of the car between 1.5 s and 3.0 s.

(c) The mass of the car is 1200 kg. Calculate the braking force on the car between 1.5 s and 3.0 s.

www.PapaCambridge.com Fig. 2.1 shows a view from above as a set of ripples move out from a point when a 2 thrown into a pond.

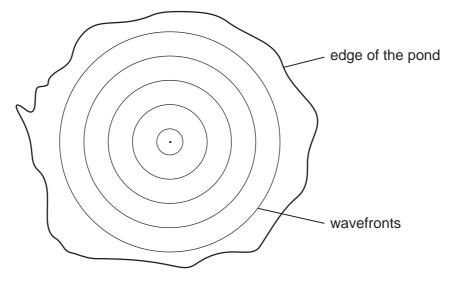


Fig. 2.1

- (a) (i) Mark on Fig. 2.1 one wavelength and label it λ .
 - (ii) A boy counts 12 waves hitting the bank in 5.0 s. Calculate the frequency of the waves.

(iii) The wavelength of the waves is 0.40 m. Calculate the speed at which the waves move.

- (b) The water is shallower near the bank and the waves slow down. Suggest what effect that this will have on
 - (i) the wavelength of the waves,

(ii) the frequency of the waves. [2]

Pe hydro For iner's

3 A student reacts the same mass of calcium carbonate with excess of the same hydroacid solution at different temperatures.

At each temperature he measures the time taken for all of the calcium carbonate to react.

His results are shown in Fig. 3.1.

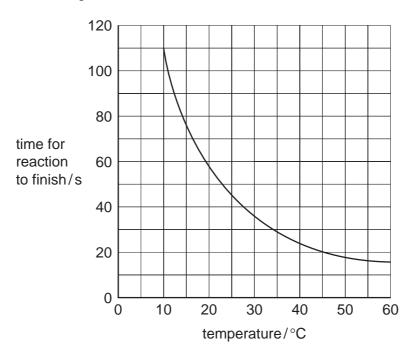


Fig. 3.1

(1)	Describe the effect of change in temperature on the rate of this reaction.	
		[2]
(ii)	State two other factors that may affect the rate of a reaction.	
	1	
	2	[2]
	(ii)	(ii) State two other factors that may affect the rate of a reaction. 1.

		42	
		5 TAN- DA	1
(b)	At a	a higher temperature the particles have more energy to react.	Co
		a higher temperature the particles have more energy to react. ergy may also be supplied by light. This happens in the process callotosynthesis. Plants use photosynthesis to make glucose.	MA
	(i)	Plants use photosynthesis to make glucose.	
		Name the reactants and the other product of photosynthesis.	
		reactants	
		other product	
			[3]
	(ii)	What enables the energy from sunlight to be absorbed in this process?	
			[1]
	(iii)	The process is speeded up by the presence of an enzyme.	
		What is an enzyme?	
			[2]
(c)	Ene	ergy from light is also used in photography.	
		otographic film contains the compound silver bromide. When light falls on the film otochemical reaction takes place.	n a
	Silv	er metal is formed, creating a black area on the film.	
	Wh	at type of reaction have the silver ions undergone?	
			[1]

4 Fig. 4.1 shows a ray of light entering a parallel sided glass block.



Fig. 4.1

(a) Complete the path of the light through and as it leaves the block.

[1]

(b) Calculate the value of the angle of refraction if the glass has a refractive index of 1.54 and the angle of incidence is 53.1°.

Show your working.

angle of refraction = _____[4]

Annonida Com

3		
POC		For
d	36	aminer's Use
	horido.	
	0,0	C.

		7
Copper	and aluminium are two commonly us	ed metals.
(a) Co	oper is a metal that can be found 'nati	ve'.
(i)	Explain this meaning of the term nat	ive.
		[
(ii)	Name one other metal that is comm	only found native.
		[
(iii)	Complete Table. 5.1 to show two use uses are based.	es of copper and the properties on which thes
	Tak	ole 5.1
	use of copper	property of copper
		[4
(b) Alu	minium is not found native. It is found	as a compound.
(i)	The main ore of aluminium contains	the compound aluminium oxide.
(i)	The main ore of aluminium contains Name this ore.	
(i)	Name this ore.	[
(i) (ii)	Name this ore. Aluminium foil is used for food containing the second containing the sec	[iners.
	Name this ore. Aluminium foil is used for food containing the second containing the sec	[
	Name this ore. Aluminium foil is used for food containing the second containing the sec	[iners.
	Name this ore. Aluminium foil is used for food conta Aluminium is a fairly reactive metal,	[iners.
	Name this ore. Aluminium foil is used for food conta Aluminium is a fairly reactive metal, Explain why.	[iners.

.....

explanation

[2]

use

transform. For iner's

6 Fig. 6.1 shows a design for a battery charger, which is made up from a transform component **P**.



Fig. 6.1

(a)	(i)	Name component P.	
	(ii)	Explain why P is needed in the circuit.	
			[3]
(b)	Exp	plain how the transformer converts an input voltage into a different output voltage.	
			[4]
(c)		e primary coil has 1800 turns. culate the number of turns in the secondary coil.	
		number of turns =	[3]
(d)		attery takes 3 hours to charge with an average current of 200 mA. culate the total charge delivered.	

charge = _____ [2]

Table 7.1 gives information about some of the elements in Group II of the Periodic Ta 7

7.1 gives informa	ition about some	9 e of the elements	s in Group II of t	he Periodic Ta	Pac ambridge
		Table 7.1			Drick
element	atomic number	formula of oxide	melting point in °C	reaction with cold water	Se
magnesium	12	MgO	649	slow	`
calcium	20	CaO	839	steady	
strontium	38	SrO	769	rapid	
barium	56	BaO	725		

(a)	Thr	ee of these elements show a trend in a physical property.	
	(i)	Describe this physical trend.	
			[2]
	(ii)	Which element does not fit in with this trend?	
			[1]
(b)	The	e elements in Table 7.1 show a trend in a chemical property.	
	Des	scribe this chemical trend.	
			[2]
(c)		en a small piece of calcium is added to cold water, a steady stream of bubbles en off. This is hydrogen gas.	is
		en the reaction is completed, a test with Universal Indicator shows the water e a pH of 12. Calcium hydroxide has been formed.	to
	(i)	Write a balanced symbol equation for the reaction of calcium with cold water.	
			[2]
	(ii)	What does the test with Universal Indicator show about the properties of calciulation hydroxide?	ım
			[1]
	(iii)	What would you see when a small piece of barium is added to cold water?	
			ro1

8 Fig. 8.1 shows the structure of a cathode ray tube.

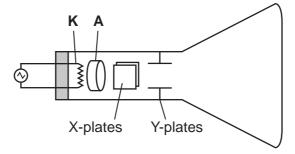


Fig. 8.1

(a)	Explain how parts K and A produce cathode rays.
	[4]

(b) Fig. 8.2 shows an experiment to measure the speed of sound. Two microphones are placed 8.0 m apart and connected to a cathode ray oscilloscope. A loudspeaker is placed in front of them.

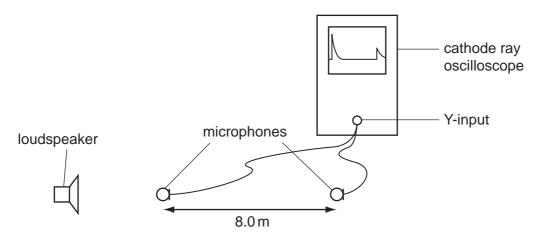


Fig. 8.2

The loudspeaker produces a sharp pulse of sound which is detected by the microphones and displayed on the cathode ray oscilloscope screen.

AMANA BABACCAIN For iner's

Fig. 8.3 shows the screen in more detail. The time base is set to 5 ms/square.

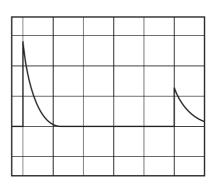


Fig. 8.3

(i)	What is the tim	ne interval	between the	pulses receiv	ed from th	e two micro	phones?
-----	-----------------	-------------	-------------	---------------	------------	-------------	---------

time =

(ii) Calculate the speed of the sound.

speed = _____[3]

square. For xaminer's Use

Copper(II) oxide reacts with dilute sulphuric acid according to the following equation. 9

$$CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$$

www.	
12	
Copper(II) oxide reacts with dilute sulphuric acid according to the following equation.	For
$CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$	TOTAL TOTAL
A student uses this reaction to prepare crystals of copper(II) sulphate.	26.CO
(a) To make sure that the crystals are pure, an excess of copper(II) oxide must be used	133

(i) Explain why an excess of copper(II) oxide must be used to ensure purity of the crystals.

(ii) The student uses 10.0 g of copper(II) oxide and 100 cm³ of 1.0 mol/dm³ sulphuric acid.

Show by calculation that the copper(II) oxide is in excess.

[A_r: Cu, 64; O,16.]

[4]

(b)	Describe how the student should carry out the preparation to obtain pure, dry crystals of $copper(II)$ sulphate.
	[4]

10 Fig. 10.1 shows the apparatus used to identify the radioactive emissions from a isotopes

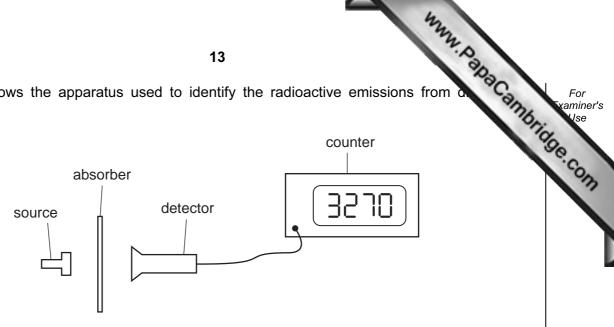


Fig. 10.1

Table 10.1 shows the count obtained in 2 minutes from an isotope of the element americium, using different absorbers.

Table 10.1

count with no absorber	count with paper absorber	count with aluminium absorber	count with lead absorber
5854	1649	1644	103

State, with reasons, the type or types of radiation emitted by the source.
[3]

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

	Elements
DATA SHEET	Table of the
Δ	Periodic
	The

								1	
	0	4 He Helium	20 Ne Neon 10	40 Ar Argon	84 Kry pton 36	131 Xe Xenon	Radon 86		175 Lu Lutetium
	II/		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine	At Astatine 85		173 Yb Ytterbium
	IN		16 O Oxygen 8	32 Sulphur	79 Se Selenium	128 Te Tellurium	Po Polonium 84		169 Tm Thulium
	>		14 Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic	Sb Antimony	209 Bi Bismuth		167 Er Erbium
	N		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin	207 Pb Lead		165 Ho Holmium
	III		11 B Boron 5	_	70 Ga Gallium 31		204 T 1 Thallium		162 Dy Dysprosium
					65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 7b Terbium
					64 Copper 29	108 Ag Silver	197 Au Gold		157 Gd Gadolinium
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gre					59 Co Cobatt	103 Rh Rhodium 45	192 Ir Iridium		Samarium
		T Hydrogen			56 Fe Iron	TO1 Ruthenium 44	190 OS Osmium 76		Pm Promethium
					Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Na Neodymium
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
					51 V Vanadium 23	Niobium A1	181 Ta Tantalum		140 Cer ium
					48 T Trtanium	91 Zr	178 # Hafnium 72		
					Scandium 21	89 × Yttrium	Lanthanum *57 *	227 Ac Actinium	series eries
	=		Berylium	24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L _i

oid series	140 Q	141 P	4 P	Pm	Sm	152 Eu	157 Gd	159 Tb	162 D	165 5	167 Er	169 T	173 Yb	175 Lu	
d series	Cerium 58	Praseodymium 59	ž 0	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	\
a = relative atomic mass	232		238												
X = atomic symbol	ᆮ	Ра	-	ď	Pu	Am	S	쓢	ర	Es	Fn	Md	8	ئ	2
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	m.
	The v	The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).	one mole	of any ga	s is 24 dr	n³ at roon	n tempera	ature and	pressure	(r.t.p.).					Papa
														Can	1
													3	Bric	
													Se.c	1	
												1	2		

Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.