

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Tandie Con

*	
∞	
9	
6	
И	
7	
_	
_	
_	
0	
7	
*	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/05

Paper 5 Practical Test

October/November 2007

1 hour 30 minutes

Candidates answer on the Question Paper.

Additional Materials:

As listed in Confidential Instructions.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Chemistry practical notes for this paper are printed on page 8

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
Total			

This document consists of 6 printed pages and 2 blank pages.

www.papaCambridge.com 1 You are going to find out how the current through a piece of wire varies with its length circuit has been set up for you and is shown in Fig. 1.1.

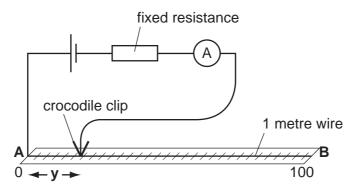
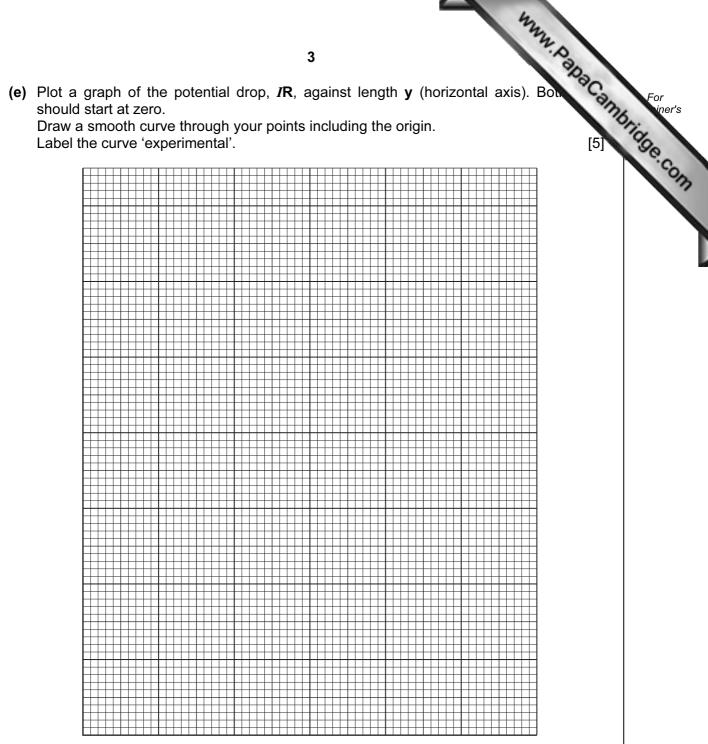


Fig. 1.1

(a) S, the value of the resistance of one metre of the wire AB, has been given to you. State this value.

- (b) Using the crocodile clip, complete the circuit by touching the wire at the 10.0 cm (y = 10 cm) mark on the ruler. Read the current I and record this value in Fig. 1.2.
- (c) Repeat this measurement of current for four further values of y between 20.0 and 90.0 cm. Record your measurements in Fig. 1.2.

length y/cm	resistance R /ohms	current I/amps	current x resistance <i>I</i> R/volts
10.0			


(d) (i) Calculate R the resistance of the wire for each length of y using the formula

$$R = \frac{\mathbf{S} \times \mathbf{y}}{100} .$$

S is the value recorded above in (a). Write these values in the appropriate column of the table.

[1]

(ii) Complete Fig. 1.2 by calculating IR, the potential drop, for each value of y, to three significant figures. [2]

y =	cm	[1

(f) Use the graph to find the value of y when IR = 1.00 V

(g)	The experiment is repeated using a cell with a larger voltage but the same wire. Draw a second curve on your graph to show the expected result. Explain how you decided this. Label this curve 'expected result'.

[2]

2 X, Y and Z are three colourless solutions. Carry out the following tests which will enal to suggest a name for each of these solutions.

Solution **P** is an indicator. It is colourless in acid solution and pink in alkaline solution.

www.PapaCambridge.com (a) Place about 1 cm³ of each solution X, Y and Z in separate test-tubes. Add two drops of solution **P** to each. Record your observations in the table.

solution Y	solution Z
	solution Y

	Sta	te you	r conclu	ısion about ea	ch solution.					[1]
	solu	ution X	(
	solu	ution Y	,							
	solu	ution Z	<u></u>							[2]
(b)	Car nan	ry out ne of t	the tes	ts for a chloric Describe the		hate as o	lphuric acid. described on pa ables you to de			
										••••
	nan	ne of a	acid							[3]
(c)	(i)	drops	s of solu		tion Y in a tes ere is no furthe		add 1 drop of t	he indic	cator P . A	dd
		obse	rvations							
										[1]
	(ii)	Repe	eat (c)(i)	using solution	n Z in place of	solution	Y. Record you	r observ	vations.	
		obse	rvations							
										[2]

		5	
(d)	(i)	Place about 1 cm ³ of zinc sulphate solution in a test-tube. Add solution Y a little at a time until there is no further change. Record your observations.	For viner's
			[2] SE, COM
	(ii)	Repeat (d)(i) using solution Z in place of solution Y . observations	[2]
(e)	Sug	ggest a name for	
		ution Y	[2]

BLANK PAGE

www.PapaCambridge.com

7

BLANK PAGE

www.PapaCambridge.com

CHEMISTRY PRACTICAL NOTES

Test for anions

Test for anions	8 CHEMISTRY PRACTICAL NO	TES Result
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> -) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.