

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

į	

CANDIDATE NAME						
CENTRE NUMBER			CANDIDAT NUMBER	E		

PHYSICAL SCIENCE

0652/03

Paper 3 (Extended)

October/November 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

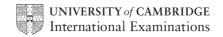
Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.


A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 16 printed pages.

1 (a) A fisherman is steering his boat using a single oar as shown in Fig. 1.1a. Fig. 1.1b shows the same boat viewed from above.

To keep the oar stationary the fisherman applies a force of 250 N to the end of the oal

Fig. 1a

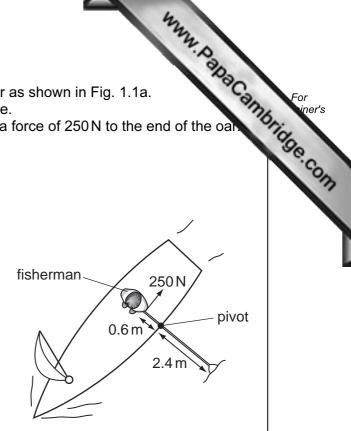


Fig. 1b

Calculate the force the oar produces on the water.

Show your working.

- (b) The boat moves through the water at a steady speed of 2.5 m/s for 12 s. It then decelerates to rest at a uniform rate in a further 8.0 s.
 - (i) On Fig. 1.2 draw a speed-time graph to show this motion.

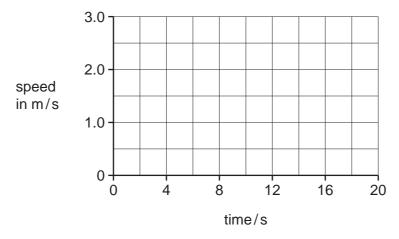


Fig. 1.2

[2]

		The state of	
	3	2.70	
(ii)	Calculate the deceleration of the boat.		For iner's
	Show your working.		For iner's
		deceleration =	[2]
(iii)	Calculate the total distance travelled by the b	boat.	
	Show your working.		
		distance travelled =	[2]

- 2 The elements in each group of the Periodic Table show trends in chemical and p properties.
 - (a) Lithium, sodium and potassium are the first three elements in Group I.

(i)	Describe the reaction of each element with water to show the trend in the chemic properties of these three elements.	ical
		[3]
ii)	Lithium reacts with water to produce lithium hydroxide and hydrogen.	
	Write a balanced symbol equation for the reaction of lithium with water.	
		[2]

(b) Table 2.1 shows information about three elements in Group II.

Table 2.1

element	atomic number	relative atomic mass	electron arrangement	density in g/cm³	melting point in °C
beryllium	4	9	2,2	1.85	1278
magnesium	12	24	2,8,2	1.74	649
calcium	20	40	2,8,8,2	1.54	839

(i)	Explain how information in Table 2.1 shows that these three elements are in the same group of the Periodic Table.	те
		[2]

(ii)	The elements in Group II show a trend in physical properties. Use information from Table 2.1 to describe this trend.
	Use information from Table 2.1 to describe this trend.
	[2]
(iii)	Magnesium reacts with chlorine to form magnesium chloride. This compound contains the ions ${\rm Mg}^{2^+}$ and ${\rm C}\it{l}^-$.
	What is the formula of magnesium chloride?
	[1]
(iv)	All of the metals in Group II conduct electricity.
	Use ideas about metallic bonding to explain this fact.
	[2]

For iner's

www.PapaCambridge.com A solar power station is designed for use in desert countries. 3 Fig. 3.1 shows the steps involved in the production of electricity. steam drives solar furnace turbine turns boils water turbine generator thermal energy to desalination

plant

Fig. 3.1

(a) A solar furnace consists of many mirrors. These mirrors are arranged so that sunlight is reflected onto a large container of water, as shown in Fig. 3.2.

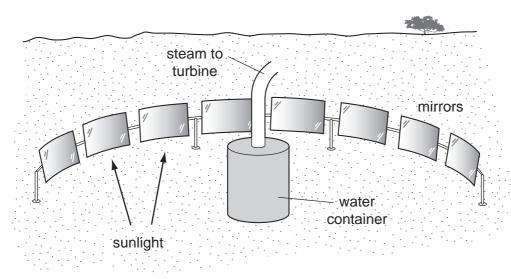


Fig. 3.2

(י)	Name the process by which the Sun's energy is transmitted to Latti.	
		[1]
(ii)	State why the water container is painted black.	
		[1]

(iii) Fig. 3.3 shows a ray of sunlight incident on a mirror.

Complete the diagram to show the ray after it is reflected from the mirror.

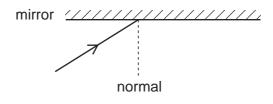


Fig. 3.3

[1]

[2]

(b)	(i)	Name	the	process	by	which	the	energy	passes	through	the	wall	of	the	water
		contair	ner.												

[1	n
 L.	۱, ۱

(11)	the bottom of t	he conta	iner.					

(c) Fig. 3.4 shows the generator.

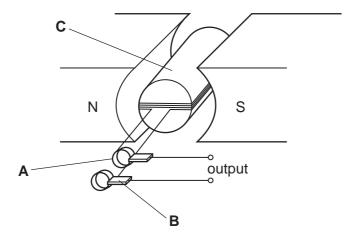


Fig. 3.4

(i)	Name part A	 [1]
(ii)	Name part B	[1

	(iii)	Name the material part C is made from, and explain why this material is used.	
		material	1
		explanation	-
		[2]	
(d)	(i)	At the desalination plant thermal energy from the turbine is used to recover pure water from sea water.	
		Name the process by which pure water is recovered from sea water in this desalination plant.	
		[1]	
	(ii)	Explain the advantage of combining the desalination plant with the power station.	
		[1]	

For iner's Long-chain hydrocarbons can be broken down into smaller more useful hydrocarbons.

www.PapaCambridge.com (a) (i) Name the process used to break long-chain hydrocarbons into smaller hydrocarbons.

(ii) State an essential condition used in this process and explain why this is used. condition

explanation

(b) In this process an alkane, $C_{15}H_{32}$, is broken down.

Octane, C₈H₁₈, and the alkenes propene, C₃H₆, and ethene, C₂H₄, are formed.

(i) Write a balanced symbol equation for this reaction.

(ii) Describe a chemical test you could use to distinguish between octane and propene.

test result for octane

result for propene [3]

......

(iii) Ethene can be used to make poly(ethene).

State the name of this process.

[1]

(iv) Propene can be used to make poly(propene).

Complete this equation for the formation of poly(propene).

$$n \left[\begin{array}{c} H \\ C = C \\ CH_3 \end{array} \right]$$

www.PapaCambridge.com Fig. 5.1 shows a circuit diagram, with a battery of e.m.f. of 6.0 V and a resistance 5 length 0.5 m connected across AB. There is a current of 2.4 A in the circuit.

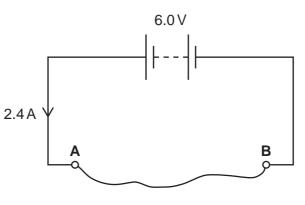


Fig. 5.1

	(a)	Calculate the	resistance of t	he resistance	wire
--	-----	---------------	-----------------	---------------	------

(b) Calculate the power output from the battery.

(c) (i) The wire is replaced with a wire of the same material and the same diameter but of length1.5 m. Calculate the resistance of this longer wire.

(ii) By making suitable calculations, compare the power output from the battery in (c)(i) with that in (b).

Green plants make glucose by the process of photosynthesis. 6

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

the state of the s	
11	
Green plants make glucose by the process of photosynthesis.	For
$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$	THAT WE'S
(a) From where does the plant obtain the energy needed for this process?	26.60
	[1]

- (b) For each 20 g of glucose made by the plant, calculate
 - (i) the mass of water used,

(ii) the volume, at room temperature and pressure, of oxygen made. (The volume of 1 mole of any gas is 24 dm³ at room temperature and pressure.)

Fig. 7.1 shows the results of an experiment to measure the half-life of the 7 phosphorus - 34.

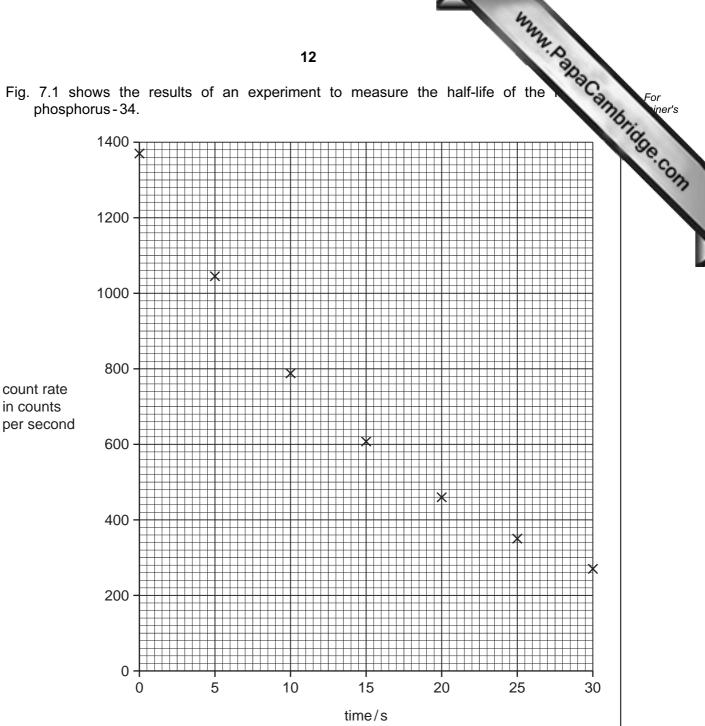


Fig. 7.1

[1] (a) (i) Complete the graph by drawing the best-fit curve.

(ii) Use the graph to find the half-life of the isotope. Show your working.

> half-life = ____s [2]

(b) Phosphorus - 34 decays emitting a β -particle. The equation for this decay is:

is: For iner's

$$^{34}_{15}P \longrightarrow ^{x}_{y}S + ^{0}_{-1}\beta$$

- (i) Calculate the value of **x**. [1]
- (ii) Calculate the value of y. [1]

Please turn over for Question 8.

8 Fig. 8.1 shows the arrangement of carbon atoms in diamond and graphite.

diamond

(b)

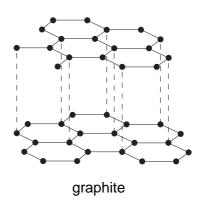


Fig. 8.1

(a) For each of the following properties, compare the two forms of carbon and relate the differences to their structures.

(i)	melting point	
		•••••
		•••••
		•••••
		[3]
(ii)	electrical conductivity	
		[3]
Gra	aphite burns in oxygen to produce carbon dioxide.	
(i)	Name the type of bonding in carbon dioxide.	
		[1]

AMANA PARA CANADATA FOR iner's

	15 A. D.	
(i	ii) Draw a dot and cross diagram to show the arrangement of electrons in dioxide.	Cambridge
		[3]
	Sun and other stars produce energy by nuclear fusion.	
	Sun and other stars produce energy by nuclear fusion. Explain what is meant by the term nuclear fusion.	
(a) E	Explain what is meant by the term nuclear fusion.	 [2]
(a) E (b) II	Explain what is meant by the term nuclear fusion. In a fusion reaction 3.84 x 10 ⁻²⁹ kg of mass is released as energy. Calculate the energy released in the reaction.	 [2]
(a) E (b) II	Explain what is meant by the term nuclear fusion. In a fusion reaction 3.84 x 10 ⁻²⁹ kg of mass is released as energy. Calculate the energy released in the reaction. (c = 3 x 10 ⁸ m/s)	 [2]
(a) E (b) II	Explain what is meant by the term nuclear fusion. In a fusion reaction 3.84 x 10 ⁻²⁹ kg of mass is released as energy. Calculate the energy released in the reaction. (c = 3 x 10 ⁸ m/s)	

The Periodic Table of the Elements **DATA SHEET**

					c	_	_		F
	0	Helium	20 Ne Neon	40 Ar Argon	36	131 Xe Xenon	Radon 86		175 Lu Lutetium
	II/		19 Fluorine	m	80 Br Bromine 35		At Astatine 85		Yb Ytterbium
	IΛ				79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium
	^		14 N itrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium
	<u>N</u>		12 C Carbon 6	28 Si Silicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium
	=		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium
					65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
Group					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gr					59 Co Cobalt 27	Rhodium 45	192 Ir Iridium		Sm Samarium
		T Hydrogen			56 Fe Iron 26	Ruthenium 44	190 Os Osmium 76		Pm Promethium
					Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Na Neodymium
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
					51 V Vanadium 23	Nobium 41	181 Ta Tantalum		Cerium
					48 Ti Titanium 22	2 r Zrzonium 40	178 # Hafnium 72		
					45 Sc Scandium 21	89 ×	139 La Lanthanum 57 *	227 AC Actinium 89	series eries
	=		Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	Rubidium	133 Cs Caesium 55	Francium 87	*58-71 Li

io series	140	141	144		150	152	157	159	162	165	167	169	173	175	
id series	రి	P	P	Pm	Sm	En	gq	욘	۵	운	ш	ᆵ	Υp	ב	
00100	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
a = relative atomic mass	232		238												
X = atomic symbol	ᄕ	Ра	D	ď	Pu	Am	Cm	쓢	ర	Es	Fm	Md	٥	۲	22
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	lendelevium Nobelium Lawrencium 102 103
														•	20
	The v	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).	one mole	of any da	s is 24 dr	n³ at roor	n tempera	ature and	pressure	(r.t.p.).					Sal Sal
				98	5 1 2	5		5	5	. ()				-	2
														10	1
														76	\
													30	76	
												•	Se.	-	
													Co		
												2	1		
													1		

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.