UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papaCambridge.com MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0652 PHYSICAL SCIENCE

0652/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	ige 2		Mark Scheme: Teachers' version	Syllabus	N.
			IGCSE – October/November 2011	0652	°°C
(a)	50 n	n/s;			ambri
(b)	cons	stant/	ion/deceleration/slowing down ; steady referring to acceleration/deceleration alculated value of acceleration/comes to rest ;	(not at constant	baCambrid [2]
(c)			of gradient, (a = (30 – 0)/(10 – 0)) ; n/s² ;		[2]
	(ii)		of F = ma = 1500 × 3.0 (e.c.f.) ; 00 N ;		[2]
	. ,		ion of frictional force/air resistance ; from engine = accelerating force + frictional force on ;	e/work done against	[2]
(d)	grea (bot	er gra ater a	idient/same mass (not accept shorter period of time cceleration/deceleration ; rks can be scored for a correct calculation of bo)		[2]
					[Total: 11]
(a)	(i)	all for balar	+ 2CO \rightarrow N2 + 2CO ₂ rmulae correct ; nced ; + CO \rightarrow N + CO ₂ max 1)		[2]
	(ii)	carbo (marl gain/	gen (monoxide) is reduced because it has lost oxygen on (monoxide) is oxidised because it has gained oxy ks can be gained for correct reference to oxidation states) ax if general explanation without reference to NO ar	/gen ; electron loss and	[2]
	(iii)	(perc (perc	wo: eentage) of nitrogen monoxide has decreased ; eentage) of nitrogen has increased ; eentage) of carbon monoxide has decreased ; eentage) of carbon dioxide has increased ;		[max 2]
		with o (if the	on monoxide reacts with oxygen to form carbon diox oxygen to form water ; e carbon monoxide to carbon dioxide process is no e here)		[1]
(b)			nising means coating with zinc ; more reactive than steel/iron ;		

P	ag	e 3	Mark Scheme: Teachers' version Syllabus	2
			IGCSE – October/November 2011 0652	"aC
	(i	ii)	painted steel will rust if scratched or chipped but galvanised will not (rust) ; (both required, but allow the comment re zinc not reacting if included in (i))	oapaCambrid [Total: h
(a)	, c		sing air (molecules) to vibrate/forming a longitudinal/compression wave <u>i</u>	
(b)	4 f (4.5 i f = 4 (allo	or 5 waves number of waves or specified number of divisions ; in 4 divs (accept 5 waves in 5 divs) ; I50 (Hz) ; w rounding errors for answer) (use of only one wave – 2 max, raw answe Hz – 2 max)	[3] er
				[Total: 5]
(a)) ((i)	light provides <u>energy</u> ;	[1]
	(i	ii)	reduction is gain of an electron/oxidation state goes down ;	[1]
	(ii	ii)	$Ag^+ + e^- \rightarrow Ag$;	[1]
(b)) (.,	add potassium bromide solution to silver nitrate solution until no furthe reaction ; filter (to obtain ppt) ; wash <u>ppt</u> with distilled water ; leave <u>ppt</u> to dry ; keep in dark ;	er [max 4]
	(i		AgNO ₃ = 170 and AgBr = 188 ; number of moles = $\frac{5}{170}$ (accept $\frac{5}{188}$);	
			= 5.5 g;	[3]
				[Total: 10]
(a)) (use of <i>I</i> = <i>V/R</i> (= 6/48) ; = 0.125 A (0.13 A) ;	[2]
	(i	ii)	(e.c.f.) use of $R = V/I$ (= 4.5/0.125) ; = 36 Ω ;	[2]
(b)	-) F	R =	V/I = 3.0/0.125 = 24 Ω /discussion re ½ potential difference leads to ½ R ;	[1]
(c)) ((i)	use of $1/R = 1/R_1 + 1/R_2 = 1/24 + 1/8 = 4/24$ (accept sum/product); $R = 24/4 = 6 \Omega$; (must show R = 6 Ω)	[2]

	4	Mark Sc	cheme: Teache	ers' version	Syl	labus 🔪	~~~ V
		IGCSE -	- October/Nov	ember 2011	0	652	Pac
							am
(ii) (6 + 2	24 =) 30 Ω ;					ST.
(iii		.) current = 6/3 ntial difference =		V ;			y Papacampril [2
(iv		not properly ntial difference >			fference < 3, nce = 3 ;	bright	if [1
							[Total: 11]
. ,	aCO ₃ =						
n	umber o	of moles = $\frac{2.5}{100}$	or 0.025 ;				
=	0.6 dm ³	3;					[3
(b) (i) calcii	um oxide is a	base because	it gains a pro	oton/the oxic	le ion dains	s a
(~) (proto hydro		an acid becaus	e it donates a			[2
(ii) ampł	noteric ;					
	acidio neutr	-					[3
							[Total: 8]
(a) (i		eedle of the vol goes back to ze					
		ot allow if there		urrent. e.g. ne	edle falls to z	ero)	[2
(ii		the magnet mo		ts/there is a <u>c</u>	<u>hange</u> in mag	gnetic flux ;	50
	whick	h <u>induces</u> an e.r	n.f./current;				[2]
(b) th	e needl	e of the voltmet	er moves in the	e opposite dire	ction ;		[1
		ce seen on the c current produce					[2
	2 0	•					[Total: 7]
(a) (i) noble	e gases (do not	accept inert, ra	re) ;			[1
(ii		ig point increase			icreases;		[2
		active (accept ir		g. oup ,			[1
(iii	Inreg	aciive racconi ir	ierti ·				

Page 5	Mark Scheme: Teachers' version	Syllabus r
	IGCSE – October/November 2011	0652
		samb.
	iagram showing 8 electrons in outer shell ; shells with 2 electrons in first shell and 8 in second sh	Syllabus 0652 hell ; [2]
(ii) p	otassium, 1+ OR chloride, 1− ;;	[2]
	oses electrons ; vo electrons are <u>lost</u> ;	[2]
		[Total: 11]
(a) (i) lio	quid turns to vapour/gas (<u>not</u> molecules) ;	[1]
e'	oiling: bubbles of vapour form in the liquid ; vaporation: molecules leave the surface of the liquid ; R	
e'	oiling occurs at fixed temperature ; vaporation at a range of temperatures 1 ; R	[max 2]
	oiling is a violent process (1 max) ;	
(b) 15 – 2	25 °C ;	[1]
(c) molec energ	cules lose energy/slow down etc. ; (not accept mo	olecules lose thermal
clear	energy loss is loss in <u>kinetic</u> energy/energy i undings/ <u>hence</u> temperature falls ;	is transferred to the [2]