MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0652 PHYSICAL SCIENCE

0652/62
Paper 6 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version
Syllabus		

1 (a) $84.5 ; 70.2$; (no tolerance)
(b) 22.5; 27.0; (no tolerance)
(c) (i) $84.5 / 22.5=3.8$ (e.c.f.);
(ii) $70.2 / 27.0=2.6$ (e.c.f.);
(d) (i) rock A is coal ;
(ii) heat (burn) the coal, it ignites/gives off gas (vapour)/owtte ;
(e) add dilute (hydrochloric) (nitric) acid ;
marble gives CO_{2}, quartz does not (both necessary) ;

2 (a) (i) (litmus turns) blue ;
(ii) ammonium chloride ; allow $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$
(b) (i) white precipitate ;
dissolves (on adding more sodium hydroxide) ; (allow turns to a colourless solution)
(ii) sulfate (ions); (allow $\mathrm{SO}_{4}{ }^{2-}$)
(iii) (precipitate) turns dark(er) (black etc.) ;
chloride (ions) present ; (allow Ct)
(c) either zinc sulfate;
ammonium chloride ;
or zinc chloride ;
ammonium sulfate ;
(d) $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$

3 (a) (i) $62^{\circ}(\pm 1$ degree);
(ii) $32 \mathrm{~mm}(\pm 1 \mathrm{~mm})$;
(iii) $\boldsymbol{l}=101 \mathrm{~mm}(\pm 1 \mathrm{~mm})$;
$\boldsymbol{w}=60 \mathrm{~mm}(\pm 1 \mathrm{~mm})$;
(b) (i) suitable scale chosen and at least 1 axis correctly labelled ; all points plotted ± 1 small square ; (allow 1 error) smooth curve drawn and extended to 90°;
(ii) displacement distance shown on graph ; and measured 60 mm (or as candidate's graph) ;
(c) 'the width' or ' w ';

4 (a) the ball (is a metal and) conducts electricity when it passes between the contacts/owtte ;
(b) $12 ; 19$ (degrees); (± 1 degree)
(c) (i) all points plotted correctly ($\pm 0.05 \mathrm{~s}, 1$ degree) ; smooth curve drawn ;
(ii) graph continued to 70°;
read from graph approx. 1.2 s ;
(d) (i) (gravitational) potential ;
(ii) kinetic;
(e) acceleration (accelerating);

5 (a) (i) any suitable acid-base indicator. e.g. litmus, methyl orange, phenolphthalein ; (reject Universal Indicator but allow e.c.f. for correct colours)

correct colours:	in acid	in alkali
litmus	red	blue
methyl orange	red	yellow
phenolphthalein	colourless	red ;

(ii) sodium citrate ;
(b) (i) orange: 11.8 ;
lemon: 24.3 ;
grapefruit 17.4 ; (no tolerance)
(ii) $11.8,23.5,12.7$ (e.c.f.) ;
(iii) lemon, grapefruit, orange ;
(c) measured/same volume of juice ; measured/known sodium hydroxide concentration ;

6 (a) $0.7 \mathrm{~cm} ; 1.4 \mathrm{~cm} ; 1.0 \mathrm{~cm}$; (no tolerance)
(b) (i) when the zero adjuster moves $1(\mathrm{~mm})$, the scale will move $10(\mathrm{~mm})$;
the pointer arm is 10 times as long as the zero adjuster arm/height;
(b) (i) when the zero adjuster moves $1(\mathrm{~mm})$, the scale will move $10(\mathrm{~mm})$;
the pointer arm is 10 times as long as the zero adjuster arm/height ; movement of pointer is 10 times larger/owtte ;
(ii) $1.8 \mathrm{~mm}, 0.7 \mathrm{~mm}, 1.4 \mathrm{~mm}, 1.0 \mathrm{~mm}$. (3 or 4 correct) ;
(c) zinc, aluminium, copper, iron;
(d) (i) they vibrate (but stay in the same place);
(ii) heat energy is given to the atoms;
they collide with each other more (with higher energy/more force)/push away (from each other) ;

