

ATIONS CAMBRIDGE

*	
4	
И	
0	
5	
0	
6	
7	
6	
_	
9	
~	

PHYSICAL SCIENCE	0652/39

Paper 3 (Extended)

CANDIDATE NAME

CENTRE

NUMBER

October/November 2011

1 hour 15 minutes

CANDIDATE NUMBER

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 19 printed pages and 1 blank page.

1 Two cars are being tested on a straight level track.

Fig. 1.1 shows the speed-time graphs for the two cars, each of mass 1500 kg.

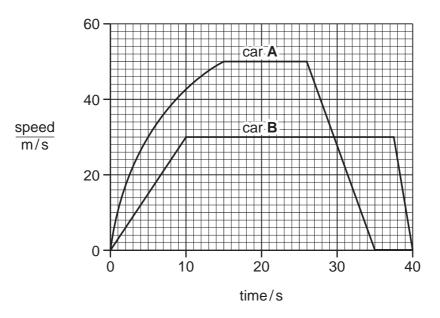


Fig. 1.1

(a) Determine the maximum velocity of car A.

(b)

	velocity =	m/s	[1]
Describe the motion of car A after 26 s.			
			[2]

(c)	(i)	3 Use the graph to calculate the acceleration of car B during the first 10 s of the	For iner's
	(ii)	acceleration = Calculate the resultant force on car B during this period.	[2]
	(iii)	force = Explain why the engine must provide a greater force than that given in your answ to (c)(ii).	[2] ver
			 [2]
(d)		the two cars approach the end of the track they brake and come to rest.	
			[2]

Fig. 2.1 shows a catalytic converter, which is part of a car exhaust system. 2

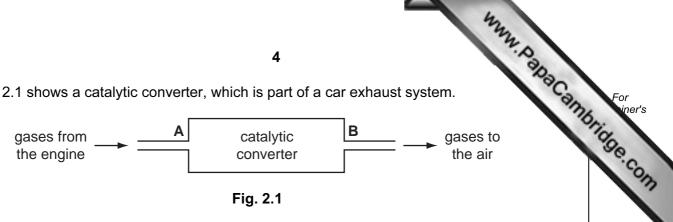


Fig. 2.1

Scientists analyse the gases at A and at B. Their results are shown in Table 2.1.

Table 2.1

gas	percentage at A	percentage at B
carbon dioxide	8.0	9.2
carbon monoxide	5.0	3.8
hydrogen	2.0	0.8
nitrogen	71.0	71.3
nitrogen monoxide	0.3	0.0
oxygen	4.0	2.8
water vapour	9.0	10.7

(a) The scientists conclude that in the catalytic converter nitrogen monoxide is converted to nitrogen by reaction with carbon monoxide.

(i)	Write a balanced equation for this reaction. Use the data in Table 2.1 to help you	J.
		[2]
(ii)	Use this reaction to explain the meaning of the terms reduced and oxidised.	
		[2]
iii)	Explain how the results in Table 2.1 support the conclusion that this reaction tal place in the catalytic converter.	ces
		[2]

	(iv)	Use data from Table 2.1 to suggest another reaction that takes place catalytic converter.	Can
			 [1]
(b)	Par	ts of the car exhaust system are made from galvanised steel.	
	(i)	Explain how galvanising prevents steel from rusting.	
			[3]
	(ii)	Suggest why galvanising is a better method of rust prevention than painting.	
			[1]

For iner's

www.PapaCambridge.com A student experiments with a rubber band. She stretches it between two retort stannotices that it produces a sound when she plucks it. The apparatus is shown in Fig. 3.1. 3

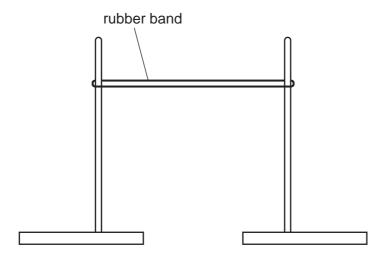


Fig. 3.1

		[2
(a)	Explain why the sound is produced.	

www.PapaCambridge.com (b) The student sets up a cathode ray oscilloscope and a microphone, as shown in to display the sound trace produced by the apparatus in Fig. 3.1.

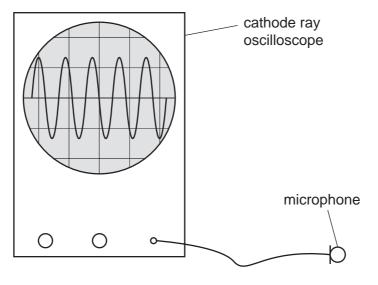


Fig. 3.2

The time base is set to 2.5 ms/division.

Calculate the frequency of the sound wave.

Show your working in the box.

V	or	
1	iner's	

]

- Silver salts are used in photography.
 - (a) The action of light on silver bromide releases an electron.

$$Ag^{\dagger}Br^{-} \longrightarrow Ag^{\dagger} + Br + e^{-}$$

8 er salts are used in photography.	ac.
a date are adda in priotography.	For iner's
The action of light on silver bromide releases an electron.	STEE.
$Ag^{\dagger}Br^{-} \longrightarrow Ag^{\dagger} + Br + e^{-}$	Se.Con
(i) How does light enable this reaction to take place?	13
	[1]

(11)	The silver ion is converted into a silver atom.	
	Why is this said to be a reduction reaction?	
		[1

[1]

(b) Silver bromide can be made from the reaction between silver nitrate and potassium bromide.

$$AgNO_3(aq) + KBr(aq) \longrightarrow AgBr(s) + KNO_3(aq)$$

(iii) Write an ionic equation to show this reduction of a silver ion.

(1)	Describe how you would prepare a pure, dry sample of silver bromide from solutions of silver nitrate and potassium bromide.	n

(ii)	What mass of silver bromide could be made from 5.0 g of silver nitrate? [relative atomic masses, A_r : Ag,108; Br,80; N,14; O,16]
	[relative atomic masses, A _r : Ag,108; Br,80; N,14; O,16]
	Show your working in the box.
	mass of silver bromide = g [3]

5 Fig. 5.1 shows an electric circuit. The e.m.f. of the battery is 6.0 V. The total resista the variable resistor 48Ω .

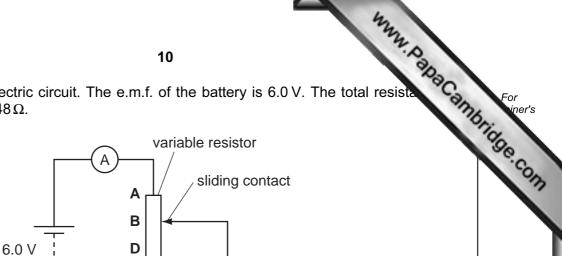


Fig. 5.1

C

(a) (i) Calculate the current measured by the ammeter.

current =	[2]	ĺ

(ii) When the sliding contact is at point **B** the voltmeter reading is 4.5 V.

Calculate the value of the resistance of the section of the variable resistor BC.

(b) The sliding contact is moved to point **D**. The reading on the voltmeter is now 3.0 V.

Show that the resistance of the section ${\bf CD}$ of the variable resistor is 24 Ω . You may assume that the current through the circuit remains the same.

		11	
(c)	leav	e student realises that he could use this circuit as a variable voltage supposes the sliding contact at point ${\bf D}$ and connects a 3.0 V bulb of resistance 8Ω in particular voltmeter.	Can
	(i)	Show that the resistance of the parallel combination of the bulb and the section of the variable resistor is $6\Omega.$	CD
	(ii)	Calculate the total resistance in the circuit.	[2]
1	(iii)	resistance =Calculate the potential drop across the section CD of the variable resistor.	[1]
		p.d. =	[2]

(iv) Comment on the brightness of the bulb.

	The state of the s	
	12 A. P.	1
	en calcium carbonate is heated strongly it decomposes to form calcium oxide bon dioxide. CaCO ₃ — CaO + CO ₂ Calculate the volume of carbon dioxide, measured at room temperature and pressured used when 2.5 g of calcium carbonate is decomposed.	Can
oui	$CaCO_3 \longrightarrow CaO + CO_2$	10
, ,	$CaCO_3 \longrightarrow CaO + CO_2$	
(a)	Calculate the volume of carbon dioxide, measured at room temperature and pressuproduced when 2.5 g of calcium carbonate is decomposed.	ıre,
	[The volume of one mole of any gas is 24 dm³ at room temperature and pressure.]	
	Show your working in the box.	
	volume of carbon dioxide = dm ³	[3]
(b)	Calcium oxide reacts with hydrochloric acid to form a salt.	
	CaO + 2HC l — CaC l_2 + H $_2$ O	
	In this reaction calcium oxide is acting as a base.	
	(i) Use this reaction to define the terms acid and base in terms of proton transfer.	
	acid	
	base	
		[2]

www.PapaCambridge.com (ii) Calcium oxide reacts with acids but not with alkalis. It is classified as a basic Complete Table 6.1 to classify three other oxides.

Table 6.1

name	ne formula property		type of oxide
calcium oxide CaO reacts with acids but not alkalis aluminium oxide Al ₂ O ₃ reacts with both acids and alkalis		basic	
carbon dioxide CO ₂ reacts with alkalis but not acids			
nitrogen monoxide NO reacts with neither acids nor alkalis			

[3]

7 Fig. 7.1 shows a magnet and a coil which is connected to a sensitive voltmeter.

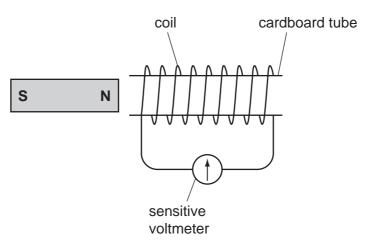


Fig. 7.1

(a)	(1)	Describe what you would observe as the magnet is moved away from the coil.	
			[2]
	(ii)	Explain this observation using the theory of electromagnetic induction.	
			[2]
(b)	The	e magnet is now moved towards the coil.	
	Des	scribe what you would observe.	
			[1]

ier.
For iner's

www.PapaCambridge.com (c) The magnet is now replaced with a similar coil connected to an alternating supporiginal coil is connected to a cathode ray oscilloscope. This is shown in Fig. 7.2.

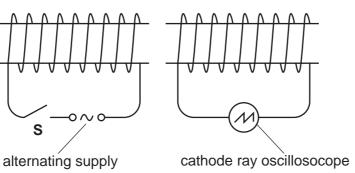


Fig. 7.2

	[2]
State and explain what is observed when the switch 5 is closed.	

Table 8.1

8.1 contains da	ıta about elemer	16 Its in Group 0 of Table 8.1	the Periodic Tal	density of gas	aCame
element	symbol	proton number	boiling point /°C	density of gas in kg/m³	
helium	He	2	-269	0.17	
neon	Ne	10	-246	0.84	
argon	Ar	18	-186	1.67	
krypton	Kr	36	-152	3.50	

1) (1)	What name is given to the elements in Group 0?		
			[1]
(ii)	Use information from Table 8.1 to describe a trend in one physical prope by this group of elements.	rty sho	wn
			[2]
(iii)	Describe a chemical property common to all elements in this group.		
			[1]
(iv)	Xenon is the next member of Group 0 after krypton.		
	Predict the density of xenon.		
	density = kg	/ m³	[1]

		Many S
		17 A. P.
(b)	(i)	Draw a diagram to show the electron arrangement in an atom of argon. For iner's

		[2]]
(ii)	A calcium ion has the same electron arrangement as	an argon atom.	
	Give the name of, and the charge on, another ion a same electron arrangement as an argon atom.	part from calcium that has the)
	name	charge[2]
(iii)	State how a calcium ion is formed from a calcium ato	m.	
		[2	.]

[2]

9 A student is investigating the cooling of a cup of tea.

	the state of the s	
	18 ent is investigating the cooling of a cup of tea.	
A stude	ent is investigating the cooling of a cup of tea.	For iner's
	akes the tea using water first boiled in a kettle. As the tea cools she notices the fit evaporates.	For iner's
(a) (i)	State one similarity between evaporation and boiling.	COM
	[1]	
(ii)	Explain the difference between evaporation and boiling.	

(b) The graph in Fig. 9.1 shows how the temperature of the tea changes with time.

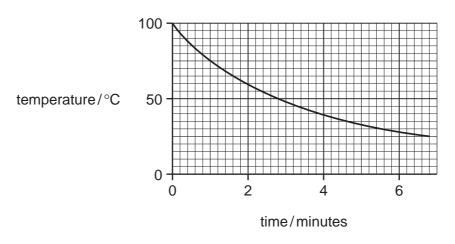


Fig. 9.1

Use the graph to estimate room temperature.

room temperature =	°C	[1]

(c)	Explain, in terms of the molecular kinetic theory, what happens to the tea as it cools.
	[2]

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements DATA SHEET

								Gr	Group								
_	=											=	2	>	>		0
							1 T Hydrogen										4 He Helium
7 Lithium	Be Beryllium											11 Boron 5	12 C Carbon 6	14 N itrogen 7	16 Oxygen	19 T Pluorine	20 Ne Neon
23 Na Sodium	24 Mg Magnesium	Γ										27 A1 Auminium	28 Si Silicon	31 Phosphorus 15	32 S Sulfur	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium	Calcium 20	Scandium 21	48 T	51 V Vanadium 23	Cr Chromium	Mn Manganese 25	56 Fe Iron	59 Co Cobalt	59 Nickel	64 Copper	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium	AS Arsenic	Selenium	80 Br Bromine	84 Krypton 36
Rb Rubidium	Strontium	89 ×	2 Zrcsnium 40	93 Nobium 41	96 Mo Molybdenum 42	Tc Technetium 43	Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cd Cadmium 48	115 In Indium	119 Sn Tin	Sb Antimony 51	Tellurium	127 I lodine	Xe Xe Xenon 54
Caesium	137 Ba Barium 56	139 La Lanthanum 57 *	178 H Hafnium	181 Ta Tan Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 I r Iridium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury	204 T t Thallium	207 Pb Lead	209 Bi Bismuth	Po	At	Rn Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89															
*58-71 190-103	*58-71 Lanthanoid series 190-103 Actinoid series	d series eries	1	140 Cerium	Praseodymium	Neodymium	Pm Promethium	Samarium	152 Eu Europium	157 Gd Gadolinium	159 Tb	162 Dy Dysprosium	165 Ho	167 Er Erbium	169 Tn	Yb Ytterbium	175 Lu Lutetium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

www.papaCambridge.com

Mo

Fm

Es

ರ

ਲ

Currium

Am

å

Ра

232 **Th**

90

b = proton (atomic) number

28

a = relative atomic mass X = atomic symbol

Key

Plutonium Pu

Californium 98

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.