

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 16 printed pages.

		liquid capillary tube	oridge
		Fig. 1.1	
I)	(i)	Name a suitable liquid to use in the thermometer.	
			[1]
((ii)	State the physical property of the liquid on which the operation of the thermomet depends.	er
			[1]
))	(i)	Explain what is meant by a <i>fixed point</i> .	
			[2]
((ii)	What are the values of the fixed points on the Celsius temperature scale?	
		upper fixed point	
		lower fixed point	[2]
;)	The	thermometer is to be calibrated.	
	The	two fixed points are marked on the thermometer.	
	Des	cribe the remaining stages in calibrating the thermometer.	
,			
•			[2]

(b) Complete Table 2.1 by giving the name and chemical formula of an ionic and a covalent compound of chlorine.

Table 2.1

compound	name	formula
ionic		
covalent		

[4]

Fig. 4.1 shows apparatus used to react copper(II) oxide with hydrogen. 4

Fig. 4.1

(a) (i) Copper(II) oxide is black.

State the colour change you would see when copper(II) oxide is reduced to copper by hydrogen.

[1]

[1]

- (ii) Write a balanced equation for this reaction.
- (iii) Explain what this reaction shows about the relative reactivity of copper and of hydrogen.

..... [1]

(b) Describe how you could show that carbon (charcoal) is more reactive than copper and less reactive than magnesium.

[3]

	ab.	2
Amı nitro	monium sulfate, $(NH_4)_2SO_4$, and ammonium nitrate, NH_4NO_3 , are important ogen-containing fertilisers.	ann
(a)	Name two substances which react together to make ammonium nitrate.	
	1	
	2	[2]
(b)	Calculate the relative molecular mass of ammonium sulfate.	
	[Relative atomic masses: A _r : H,1; N,14; O,16; S,32.]	
	answer	[2]
(c)	Show by calculation that there is 35% nitrogen by mass in ammonium nitrate. NH₄N	D 3.
(-)	[Relative molecular mass of ammonium nitrate is 80]	
		[2]
(d)	Ammonium sulfate contains less nitrogen by mass than ammonium nitrate.	
	Suggest why ammonium sulfate is sometimes preferred as a fertiliser.	
		[1]

- (a) On Fig. 6.1 mark
 - (i) an angle of incidence and label it i, [1]

[1]

- (ii) an angle of refraction and label it r.
- (b) Blue light refracts more than red light.

Blue light is shone along the same incident path as the red light.

On Fig. 6.1, draw the path of the blue light as it passes through the block and emerges into the air. [2]

7 Danielle is investigating the resistance of a length of constantan wire. She builds the circuit shown in Fig. 7.1.

Fig. 7.1

(a) (i) Name the component labelled X. [1] (ii) Explain the use of this component in the circuit.[1] (iii) On Fig. 7.1, show how Danielle should connect a meter to measure the potential difference across the wire. [2] (b) When the potential difference across the constantan wire is 4.5 V, the reading on the ammeter is 0.12A. Calculate the resistance of the constantan wire.

resistance = _____ unit _____ [3]

	12
	11 · · · · · · · · · · · · · · · · · ·
(c)	Danielle connects a second identical constantan wire in parallel with the original
	State how
	(i) the total resistance in the circuit changes,
	[1]
	(ii) the reading on the ammeter changes.
	[1]
(d)	A third piece of constantan wire has the same length as the original wire but has a larger diameter.
	State how the resistance of the third wire compares with the resistance of the original wire.
	Give a reason for your answer.
	[2]

www.papacambridge.com Fig. 8.1 shows apparatus used in an experiment to react hydrochloric acid with 8 calcium carbonate to produce carbon dioxide.

Fig. 8.1

- (a) Complete Fig. 8.1 to show apparatus used to collect and measure the volume of the carbon dioxide. [2]
- (b) Describe a test to show that the gas collected is carbon dioxide.

test	
-	
result	 [2]

(c) Table 8.1 shows the volume of carbon dioxide collected during the experiment.

time/minutes	volume of carbon dioxide collected/cm ³
0	0
1	15
2	26
3	34
4	40
5	40

Та	b	le	9	1
ıα	D		3	

substance added	gas, if any, formed
copper	
magnesium	
sodium carbonate	

[3]

(b) A salt is formed when a metal oxide neutralises an acid.

Complete the word equation for this reaction.

[1]

(b)	Nai	me an alkane with four carbon atoms and give its formula.	
	nar	ne	
	forr	nula	[2]
(c)	(i)	Explain why ethene is more reactive than ethane.	
			[1]
	(ii)	Explain why ethene is important in the chemical industry.	
			[1]

											1	6											2.	Daba
	0	4 Helium 2		20	Ne	Neon 10	40	Ar	Argon 18	84	Krypton 36	131	Xenon	54	Rn Radon 86				175	Lutetium 71		۲	Lawrencium 103	Cambri
	١١٨			19	L	Fluorine 9	35.5	CI	Chlorine 17	80	Bromine 35	127	- anipol	53	At Astatine				173 Vh	Ytterbium 70		No	Nobelium 102	490
	N	_		16	0	Oxygen 8	32	S	Sulfur 16	79	Selenium 34	128	Tellurium	52	Polonium 84				169 T	Thulium 69		Md	Mendelevium 101	
	>		:	41	z	Nitrogen 7	31	L	Phosphorus 15	75	As Arsenic 33	122	SD	51	209 Bi Bismuth				167	Erbium 68		Еm	Fermium 100	
	\geq		:	Boron C 12 Boron C 12 Cathon C 12	Carbon 6	28	Si	Aluminium Silicon 13 14	73	Germanium 32	119 V	u" ⊧	10 Indium Tin 49 50	204 207 T1 Pb R1 Lead 81 82		_		165	Holmium 67		Es	Einsteinium 99	(r.t.p.).	
	=		:		5 Boron	27	٩١		70	Ga Gallium 31	115	115 7						162	Dysprosium 66		ŭ	Californium 98	pressure	
										65	Zinc 30	112	Cadmium	48	201 Hg ^{Mercury}				159 Th	Terbium 65		BĶ	Berkelium 97	ature and
										64	Cu Copper 29	108	Ag	47	197 Au Gold				157 157	Gadolinium 64		Cm	Curium 96	n temper.
dno									-	59	Nickel 28	106	Palladium	46	195 Pt Platinum 78				152	Europium 63		Am	Americium 95	m³ at roor
9 G			-						_	59	Co Cobalt 27	103	Rhodium	45	192 r ridium	77 maum 150 Samarium 62 Pu	Plutonium 94	as is 24 d						
		Hydrogen							-	56	Fe Iron 26	101	Ruthenium	44	190 OS Osmium 76	_				Promethium 61		dN	Neptunium 93	of any ga
										55	Mn ^{Manganese} 25	ŀ	Lechnetium	43	186 Re Rhenium 75				144 NG	Neodymium 60	238	D	Uranium 92	one mole
									-	52	Chromium 24	96	Molvbdenum	42	184 V Tungsten 74				141	Praseodymium 59		Ра	Protactinium 91	olume of
									-	51	Vanadium 23	93	Niobium	41	181 Ta Tantalum 73				140 0	Cerium 58	232	Ę	Thorium 90	The v
										48	T ^{Ittanium}	19	Zirconium	40	178 Hafnium				I		mic mass	lodn	mic) number	
							1			45	Scandium 21	88	Yttrium	39	139 Lanthanum 57	227	Ac	Actinium 89	d series	series	= relative ato	= atomic syn	= proton (ato.	
	=			ື້	Be	Beryllium 4	24	Mg	Magnesium 12	40	Calcium 20	88	Strontium	38	137 Ba Barium 56	226	Ra	Radium 88	anthanoic	Actinoid s	a	×	q	
	_			-	5	Lithium 3	23	Na	11 Sodium	39	Potassium 19	85	Rubidium Rubidium	37	133 CS Caesium 55		F	Francium 87	58-71 L	90-103		(ey	٩	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of