

ATIONS CAPTURE OF THE PROPERTY OF THE PROPERTY

*	
4	
7	
_	
9	
5	
9	
6	
6	
0	
И	
*	

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/33

Paper 3 (Extended)

October/November 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 18 printed pages and 2 blank pages.

Table 1.1 shows elements in a period of the Periodic Table. 1

Table 1.1

				2					Mu. P.
o	ws elements	in a pe		ne Perio	odic Tab	ole.			For siner's
	group	I	II	III	IV	V	VI	VII	Se.COM
	element	Na	Mg	Al	Si	Р	S	Cl	

(a)	Des	scribe how th	e electronic structure of su	accessive elements differs	across the period.
					[1]
(b)		mplete Table i-metals.	e 1.2 to show which of t	these elements are meta	als and which are
			Table 1	.2	
			metals	non-metals	
		·			[1]
			24		
(c)			n ion Ca ²⁺ . Chlorine form a		
	(i)	Deduce the	formula for the ionic comp	ound calcium chloride.	
					[1]
	(ii)	Describe, ir chloride.	n terms of electrons, how	v calcium and chlorine at	oms form calcium
					[3]

(d) Sulfur dioxide is a covalent molecule.

Fig. 2.1a shows a high jumper about to leave the ground. Fig. 2.1b shows the san 2 jumper at the top of his flight.

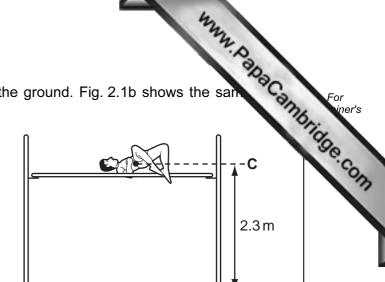


Fig. 2.1a

Fig. 2.1b

The high jumper has a mass of 75 kg. Point **C** shows the centre of mass of the high jumper.

(a) Explain what is meant by the term centre of ma	(a)	Explain what is meant b	by the term	centre of mas
--	-----	-------------------------	-------------	---------------

[2]

(b) (i) Calculate the increase in the gravitational potential energy of the high jumper from when he leaves the ground to when he reaches the top of his flight.

$$[g = 10 N/kg]$$

increase in gravitational potential energy = _____ [2]

(ii) State the minimum kinetic energy with which the high jumper must leave the ground.

	Way Way	
	5	
(c)	On a second jump the same high jumper leaves the ground with kinetic energy of	For
	On a second jump the same high jumper leaves the ground with kinetic energy of Calculate the speed at which he leaves the ground.	Tidge Co
	speed =[3]	
(d)	The gain in potential energy of the high jumper is less than the work he does in his take off.	
	Suggest a reason for this.	
	[1]	

1-0	or
	iner's
	1010
*	
n	

3 Magnesium sulfate is a salt that is soluble in water.

	the the same of th
	6
Ма	gnesium sulfate is a salt that is soluble in water.
It ca H₂S	gnesium sulfate is a salt that is soluble in water. an be made in the laboratory from solid magnesium oxide, MgO, and dilute sulfuric actions of the solid magnesium oxide how you would make pure dry crystals of magnesium sulfate from solid magnesium oxide and dilute sulfuric acid.
(a)	Describe how you would make pure dry crystals of magnesium sulfate from solid magnesium oxide and dilute sulfuric acid.
	[4]
(b)	Write a balanced equation for the reaction between magnesium oxide and sulfuric acid.
	Include state symbols in your equation. [3]
	[o]
(c)	Magnesium sulfate can also be made from magnesium hydroxide and sulfuric acid.
	$Mg(OH)_2 + H_2SO_4 \longrightarrow MgSO_4 + 2H_2O$
	What is the maximum mass of magnesium sulfate that could be made from 5.0 g magnesium hydroxide?
	[Relative atomic masses: A _r : H,1; Mg,24; O,16; S,32]
	Show your working in the box.

mass of magnesium sulfate = _____ g [3] 4 Fig. 4.1 shows a wind powered generator which has an efficiency of 30%.

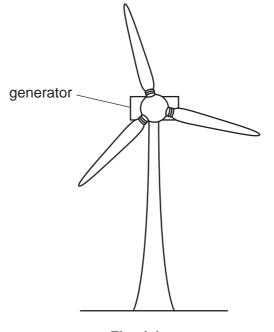


Fig. 4.1

(a)	The generator depends on a form of energy possessed by the wind.	
	Name this form of energy and briefly explain your answer.	
		[2]
(b)	Explain what is meant by the phrase the generator has an efficiency of 30%.	
		•••••
		[2]
(c)	The generator has a maximum output of 4500W at 230V.	
	Calculate the maximum current that can be taken from the generator.	

current = _____ [2]

www.PapaCambridge.com A student uses the apparatus shown in Fig. 5.1 to investigate the reaction by 5 magnesium and hydrochloric acid.

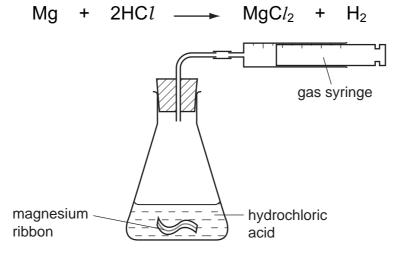


Fig. 5.1

She measures, at room temperature and pressure, the hydrogen given off when magnesium ribbon reacts with an excess of dilute hydrochloric acid.

Results of her investigation are shown in Fig. 5.2.

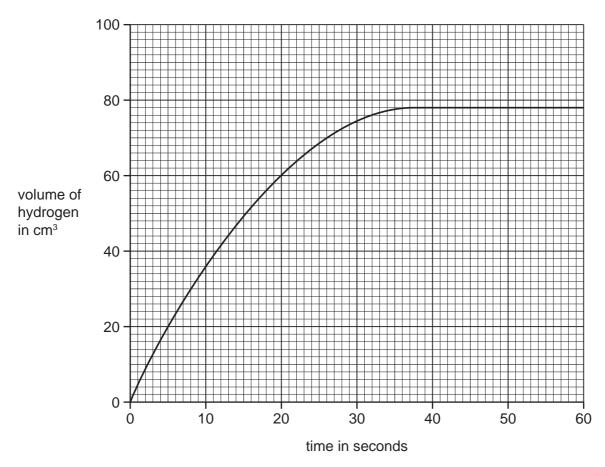


Fig. 5.2

		9	1
)	(i)	State the time at which the reaction stopped. Explain why the reaction stopped.	Can
	(ii)	Explain why the reaction stopped.	
			[1]
)		experiment is repeated using the same mass of magnesium ribbon and a modern centrated solution of hydrochloric acid.	ore
	On	Fig. 5.2, sketch the line you would expect for this second experiment.	[2]
:)	Cal	culate the mass of magnesium used in the reaction.	
	[Re	lative atomic masses: A _r : H,1; C <i>l</i> ,35.5; Mg,24.]	
	The	volume of one mole of any gas is 24 dm ³ at room temperature and pressure.	
	Sho	ow your working in the box.	
		mass of magnesium =g	[4]

6 (a) Fig. 6.1 shows a parallel beam of light incident on a converging lens.

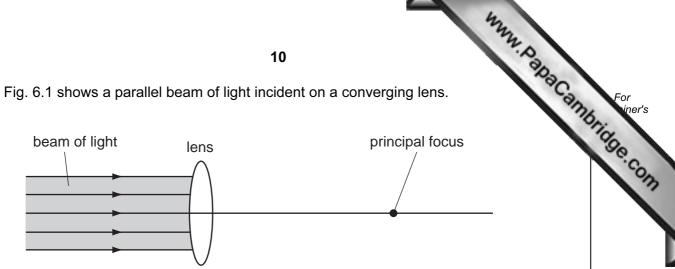


Fig. 6.1

- (i) On Fig. 6.1, draw rays to show the path of the light after it passes through the lens. [3]
- (ii) On Fig. 6.1, draw an arrow to show the focal length of the lens. [1]
- (b) (i) Jan uses a converging lens of focal length 10.5 cm to study a small insect. Point P on the insect is 5.0 cm from the centre of the lens.

On Fig. 6.2, draw two rays from point P to show how and where the image of the insect is formed. [3]

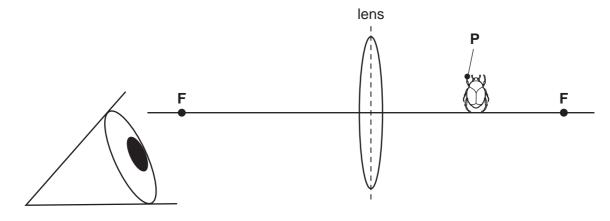


Fig. 6.2

(ii) Give a full description of the image.

7	Zinc and	copper	are two	commonly	used	metals
•		COPPOI	are two	COLLINIOLIN	acca	III O Laio

		The state of the s	
		the copper are two commonly used metals. It is mixed with copper to make the alloy brass. It is stronger than either pure metal. Explain why.	1
Zin	c and	d copper are two commonly used metals.	Car
(a)	Zin	c is mixed with copper to make the alloy brass.	
	Bra	ss is stronger than either pure metal. Explain why.	•
			[3]
/ b \	7in	a is used to make galvenized steel	
(a)		c is used to make galvanised steel.	
	(i)	What is galvanised steel?	
			[1]
	(ii)	Explain how galvanised steel is more useful than steel that has not be galvanised.	een
			[1]
	(iii)	Explain how zinc makes this improvement to steel.	
			[2]
(c)	Cop	oper is used to make saucepans.	
	Sta	te which property of copper makes it a good choice for this application.	
			[1]

builds the For iner's

8 Daniel is investigating the resistance of a length of nichrome wire. He builds the shown in Fig. 8.1.

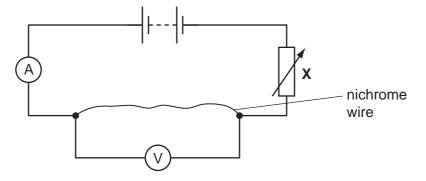


Fig. 8.1

(a) He takes a series of readings of the current with different potential differences across the nichrome wire. He uses his results to draw the graph shown in Fig. 8.2.

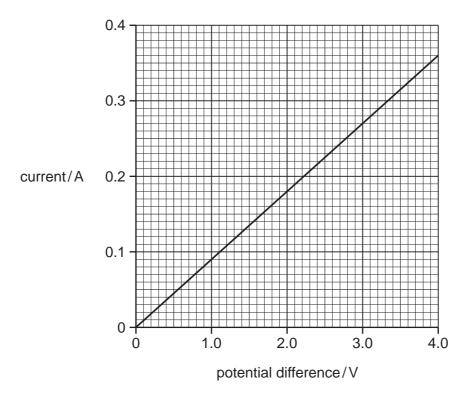


Fig. 8.2

	Γ1.

			Way.	
		13	· Og	
	(ii)	Use the graph to determine the resistance of the ni	chrome wire.	For
		Show your working.		For iner's
		resist	ance =	[3]
(b)	Dar	aniel then uses a second piece of nichrome wire half t	he diameter of the original w	ire.
	Cal	alculate the resistance of this piece of wire.		
		resist	ance =	[2]

- Poly(ethene) is made from ethene, C₂H₄. 9
 - (a) Ethene is an unsaturated compound.

Explain the mean	ning of the	term <i>unsaturate</i>	₽d.
------------------	-------------	------------------------	-----

14	WWW. Par
/(ethene) is made from ethene, C₂H₄.	For in the
Ethene is an unsaturated compound.	Tighting thers
Explain the meaning of the term unsaturated.	36.C
	The state of the s
	[1]

(b)	Describe how the ethene for this process is made.
	[2]

(c) Complete this equation to show the formation of poly(ethene) from ethene.

$$\begin{array}{c} \longrightarrow \\ \begin{bmatrix} H & H \\ - & - \\ C - C \\ - & H \end{bmatrix}$$

www.PapaCambridge.com

Please turn over for Question 10.

www.PapaCambridge.com

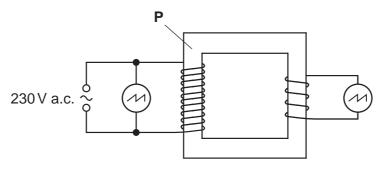


Fig. 10.1

The input is connected to a cathode ray oscilloscope (c.r.o.) and the output is connected to another c.r.o.

(a)	(i)	The transformer works by electromagnetic induction.
		Explain what is meant by electromagnetic induction.
		[2]
	(ii)	Explain why the input to the transformer must be an alternating voltage.
		[0]
		[2]
	(iii)	P is the transformer core.
		Name the material that P is made from. [1]
	(iv)	Outline the role of ${\bf P}$ in the operation of the transformer. Your answer should include the properties of the material which make it suitable.
		[2]

www.PapaCambridge.com (b) (i) This transformer allows an appliance designed to be used on a 115V supply used on a 230 V supply.

Calculate the turns ratio of the primary coil to the secondary coil ($N_{primary}$: $N_{secondary}$).

$$(N_{\text{primary}}: N_{\text{secondary}}) =$$
 [1]

(ii) Fig. 10.2 shows the screen of the c.r.o. that is connected to the input.

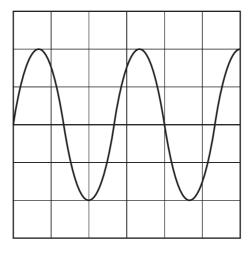


Fig. 10.2

On Fig. 10.2, draw the trace that would be obtained on the c.r.o. connected to the output.

You should assume that the time base and y-gain settings of the two cathode ray oscilloscopes are the same. [2] **BLANK PAGE**

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements DATA SHEET

	0	4 He ium	20 Neon	40 Ar Argon	84 Kr Krypton 36	Xe Xe Xenon 54	Radon 86		175 Lu Lutetium
	II/		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 	At Astatine 85		173 Yb Ytterbium
	I۸		16 Oxygen	32 Sulfur	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium
	>		14 X Nitrogen 7	31 Phosphorus 16	75 AS Arsenic	Sb Antimony 51			167 Er Erbium
	ΛΙ			28 Si Silicon	73 Ge Germanium	Sn Tin	207 Pb Lead		165 Ho
	≡		11 Boron	27 A1 Aluminium 13	70 Ga Gallium 31	115 n Indium 49	204 T 1 Thallium		162 Dy Dysprosium
						Cadmium Cad Cadmium 48	201 Hg Mercury 80		159 Tb
					64 Copper	108 Ag Silver 47			157 Gd Gadolinium
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Ğ					59 Co Cobalt	103 Rh Rhodium 45	192 F		150 Sm Samarium
		T Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
					51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce
					48 T Trtanium	2r Zrconium 40	178 # Hafnium 72		
					Scandium	89 ×	139 La Lanthanum s57 *	227 Ac Actinium 89	series eries
	=		Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 L.i Lithium	23 Na Sodium	39 Potassium	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 Le
									-

l			Cerium 58	Praseodymium 59	Neodymium 60	Promethium	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
Key	ص × ه	a = relative atomic mass X = atomic symbol b = proton (atomic) number	232 Th Thorium	Pa Protactinium 91	238 U Uranium	Neptunium	Pu Plutonium	Am Americium 95	Cm Curium	BK Berkelium 97	Californium	ES Einsteinium 99	Fm Fermium 100	Mendelevium 101	Nobelium 102	Lr Lawrencium 103
			The ve	The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).	ne mole	of any ga	ıs is 24 dı	m³ at roor	n tempera	ature and	pressure	(r.t.p.).			PapaCa	Co
															B	Mbris

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.