CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0652 PHYSICAL SCIENCE

0652/22

Paper 2 (Core Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page	2	Mark Scheme	Syllabus	Paper		
			IGCSE – October/November 2013 0652	1	22 [1]		
1	(a) to	to prevent ink dissolving/running into the water/samples mix;					
	(b) in	b) insoluble (in water) ;					
	(a) (i)	\ thro	•		[41		
	(c) (i)) thre	e		[1]		
	(ii)		have one colour/spot in common/both composed on have one colour different;	f 2 colours ;	[2]		
		Dour	Thave one colour amerent,		[Total: 5]		
					[Total. o]		
2	(a) (i)	75,	51, 27, 3 – all correct ±1 cm ;		[1]		
	(ii)		els equal distances ; qual time intervals ;		[2]		
	(iii)		ce of any two correct distances and times, e.g. (0,0)	and (96, 0,80) ·	[-]		
	(111)	<u>use</u>	of change of distance/time; cm/s;	, and (90, 0.00),	[3]		
	(h) (a						
	(a) (c	onstan	t) acceleration ;		[1]		
					[Total: 7]		
3	` '	tric aci	·		101		
	pc	otassiu	m hydroxide/potassium carbonate ;		[2]		
	(b) ne	eutralis	ation ;		[1]		
	e\	(c) any two valid points: evaporate (to concentrate solution);					
		ool/allo ter and	w crystals to form ; dry ;		[max 2]		
					[Total: 5]		
4	(a) (i)) conv	vection;		[1]		
	(ii)	•	dle heats the air (accept heats smoke) ; expands ;				
			omes less dense (so rises) ;		[3]		
	(b) (i)) infra	red radiation/visible light;		[1]		
	(ii)) the l	hot rocks heat the air ;		[1]		
					[Total: 6]		

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0652	22

[1]

[1]

[1]

[Total: 6]

(d) (i) sodium chloride (accept common salt);

(e) sodium/magnesium/aluminium;

(ii) ionic;

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0652	22

8 (a) an electric current has a magnetic field; [1]

(b) (i) nails move towards the iron (accept attracted to); iron is magnetised; [2]

(ii) nails fall to the ground; iron loses magnetism/iron is easily demagnetised/does not retain magnetism; [2]

(iii) nails move towards the steel (accept attracted to);
nails remain on the steel when switch is opened;
[2]

[Total: 7]

[Total: 5]

9 (a) filtration; chlorination/ozonation; [2]

(b) turns blue/white to blue; [1]

(c) boil/freeze; 100 °C (at 1 atm pressure)/0°C; [2]

10 (a) (i) $12 (\Omega)$; [1]

(ii) <u>use of</u> $V = IR \rightarrow I = 6/12$ = 0.5 A; [2]

(b) (i) voltmeter; [1]

(ii) in parallel over the 4 Ω resistor; [1]

(iii) Use of $V = IR = 0.5 \times 4$ (ecf); = 2 V; [2]

Page 5				Mark Scheme	Syllabus	Paper	
			<u>'</u>	IGCSE – October/November 2013	0652	22	
	(c)		curre	ect connection ; ent greater than in 5.1 ; simple explanation e.g. resistance less in paral	lel circuit :		[1] [2]
			WILII	i simple explanation e.g. resistance less in paral	ioi diredit ,		
						[Total:	10]
11	(a)	sim mei gra	mbers datior	from: chemical properties; s differ from each other by CH ₂ ; n in physical properties; nctional group;		[ma	nx 2]
	(b)	CH.	4;				
	(-)		H 	H -CH 			
		Н—	-ç—	-¢—н			
			H	 H			
		C L	J .	,			[2]
		C ₃ F	18,				[3]
	(c)	fuel	;				[1]
	(d)	(i)		nnes have only single bonds/saturated ; enes have (at least one) double bond/unsaturate	ed ;		[2]
		(ii)	bron	mine water/bromine ;			[1]
				olourised;		[1]	[2]
						[Total:	10]
12	(a)	(i)	deta	tting of an atomic nucleus ; ail; e.g. into two (more or less) equal parts/with t leus ;	the release of energy/lar	ge	[2]
		(ii)	kinet	etic energy ;			[1]
		` '					
	(b)			h pressure or temperature/shield outside from ret in case of catastrophic failure;	adioactive emissions/		[1]
						[Tota	l: 4]

[1]

13 (a) 101;

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0652	22

(b) potassium is 39 × 3 = 117(g);
 whole molecule is 212 or PO₄ is 95;
 which is less than triple potassium or which is less than K₃;
 (accept correct calculation of % potassium, etc.)

[Total: 4]