CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0652 PHYSICAL SCIENCE

0652/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		<u> </u>			N	lark Sc	heme			S	yllabus		Paper		
				IGCS	SE – O	ctober/	Novem	ber 201	13		0652		31		
1	(a)	(i)					ct ±1cm ect (ecf)							[1] [1]	[2]
		(ii)	if line	e goe	s thro (0,0);			-			but allow 12, 20, ⁴		[1] ; [1]	[2]
	(b)		Use 210	of gra	adient (² or 2.1	176 –10 m/s² (a	0) / (0.8 accept	30 – 0) o 206 and	or use o	nd (175, of <i>a = (v</i> e sig. figs es betwe	- <i>u) / t</i> ; s) ;	and 210	0)	[1] [1] [1]	[3]
			•			-							•	[Tota	al 7]
2	(a)		Na⁺ correc	-	bols 1,	3 corre	ect char	ges 1) ;						[2]	
	(h)	Eo	\circ	(accor	ot Fe ³⁺ 2	O ²⁺)								[1]	
	(D)	1 62	O_3 , ((acce _t	λίι ο 2	O 3)									
														[Tota	aı 3]
3	(a)	boil	ing po	oint in	ıcrease	s (dowi	n the gr	oup/wi	th atom	ic numb	er);			[1]	
	(b)	acc	ept a	any nu	mber b	etween	–170 a	and –24	0 (actua	ally –189	9)			[1]	
	(c)	recon	ognition nmen	ion on nt that	åverag	m and <i>l</i> e densi	ity of He		n less t	se than a han der air ;	•	air OR		[1] [1] [Tot :	[2] al 4]
4	(a)				<u>metal,</u> different			nor Hg)	,					[1] [1]	[2]
	(b)	(not e,m	t acce	ept flic oltage	ks up t produc	hen do ed (ac	wn); cept cu	he read rrent) ; mperat	-	nges				[1] [1] [+1]	[3]
	(c)	mea mea	asure asure	es high es tem	n tempe peratur	erature re at a p	point;	ref to lo	-	or wide);		ANY 2	
										to comp gh <u>in en</u>				(+1)	[3]
														[Tota	al 8]

	Page 3			Mark Scheme	Syllabus	Paper	
				IGCSE – October/November 2013	0652	31	
5	(a)	(i)		nond strong/covalent bonds or bonds in all direction white has layers which slide/weak bonds between la		[1] [1]	[2]
	(ii)		nond has no free electrons and/or graphite has free		[1]	
			_	raphite electrons are between layers and/or in diamely lived in (strong) bonding;	ond all electrons	[1]	[2]
	(i	ii)		gnition of covalent/strong bonds (so similar mp) ; e amount of energy needed to separate atoms joined	d by covalent bon	[1] ds; [+1]	[2]
			•	not allow either mark if the candidate states that gra er melting point/has much weaker bonds than diamo	•		
				has weak forces <u>between molecules</u> ; rgy is needed to separate the molecules;		[1] [1]	[2]
	(c)	(i)		$O_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$ mark for formulae; one mark for balance;		[2]	
	(ii)		rgy carried by e.m. radiation ; orbed by the plant ;		[1] [1]	[2]
						[Total	12]
c	(0)	/:\	Only	, a fraction of incident wave is reflected (wave aprec	do out oto	[4]	
6	(a)	(i)	_	a fraction of incident wave is reflected/wave sprea		[1]	
	(ii)	4 ½	squares $\times 0.05 \times 10^{-3} = 2.25 \times 10^{-4} \text{ s} (0.000225 \text{ s});$		[1]	
	(i	ii)	= 34	ance = $\frac{1}{2} \times 3 \times 10^8 \times 2.25 \times 10^{-4}$; 000 m (accept 33750 m); f $\frac{1}{2}$ missed leading to 68 000 m);		[1] [1]	[2]
	(b)	(i)	<u>Use</u>	of $c = f \lambda (\rightarrow f = 3 \times 10^8 / 7.5 \times 10^{-3})$;		[1]	
			f = 4	$1.0 \times 10^{10} \text{Hz}$;		[1]	[2]
	(ii)		ile phone communication/cooking/uhf radio commu e: Penalise power of ten error once only in the whole		[1]	[1]
						[Tota	al 7]
7	(a)	(i)	All p	oints, including (0,0) plotted to within one small squ	are ;	[2]	
			(one	e mark if one point only is missing.incorrect)			
	(ii)	smo	oth curve within one small square of each point;		[1]	
		•		through) lime water ; udy/milky ;		[1] [1]	[2]

Page 4			ı	Mark Scheme	Syllabus	Paper	
				IGCSE – October/November 2013	0652	31	
	(c)	(i)	all o	f the hydrochloric acid had reacted ;		[1]	
		(ii)	num	1 CaCO ₃ = 100 ; ber of moles = 40 / 24 × 10 ³ ; ore power of ten for this mark, but not carry forward)		[1] [1]	
			= 0.1	17 g;		[1]	[3]
	(d)			is steeper than original and starts from (0,0) (to the ls at 40 cm ³ (same as original line);	left of original line	e); [1] [1]	[2]
						[Total	111]
8	(a)	(i)	Tran (acc	nsformer 1 step up/increases the voltage (for transmisformer 2 step down/decreases the voltage (for holept in correct reference to decrease/increase of cure 1c mark if both 'step up transformer and 'step down	mes) ; rent)	[1] [1]	[2]
		(ii)		s energy loss (in power lines) ; rence to lower current for same power ;		[1] [1]	[2]
	(b)	(i)	lattic in a	d conductor; ce of positive ions (not accept if +ve ions move); sea of electrons; trons free to move;		[1] [1] [1] [1]	[4]
		(ii)		erence to malleability of copper or increase strength o for reference to alloying);	of cable ;	[1]	[1]
						[Tota	al 9]
9	(a)	eled diag	ctrons gram	showing four shared electrons between two cas around the carbons; showing two hydrogen atoms for each carbon atom;		[1]	[2]
	(b)	(i)	crac	king (accept thermal decomposition);		[1]	
		(ii)	_	temperature (not accept heat); lyst;		[1] [1]	[2]
	(c)	(i)		$1 C_2H_4 = 28$ and RFM $C_2H_5OH = 46$; s of ethanol = 46 / 28 (= 1.6 kg);		[1] [1]	[2]
		(ii)	yeas adde (not	nentation; st; ed to sugar (allow source of sugar e.g. grapes); allow 2 nd and 3 rd marks if the yeast is killed by high mark if in the presence of oxygen)	temperature, lose	[1] [1] [1]	[3]
						[Total	10]

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0652	31

10 (a) (i) The joining together of two nuclei;

[1]

extra detail (e.g. the release of energy, small (light) nuclei, high energy collision);

[**+**1] **[2]**

(ii) radio waves

microwaves

thermal (Heat), IR

U.V.

X-ray

γ-rays

visible radiation/light neutrinos/neutrons;

ANY 2 [2]

(b) (i) $((3.3434 \times 2) - 6.6810) \times 10^{-27} = 0.0058 \times 10^{-27} \text{kg} = 5.8 \times 10^{-30} \text{kg}$; [1]

(ii) $E = mc^2 = (5.8 \times 10^{-30} \times (3 \times 10^8)^2)$ (Formula on its own gains the mark); [1] = 5.2×10^{-13} J; [1] [2]

(iii) number of reactions / s = power / energy of each reaction = $4 \times 10^{26} / 5.22 \times 10^{-13}$; [1] = 7.67 × 10³⁸ (s⁻¹); [1] [2]

Note: Penalise power of ten error once only in the whole question.

[Total 9]