

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/22

Paper 2 (Core)

October/November 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 A student investigates the composition of four different inks using paper chromatography.

For Examiner's Use

Fig. 1.1 shows the results of his experiment after one hour.

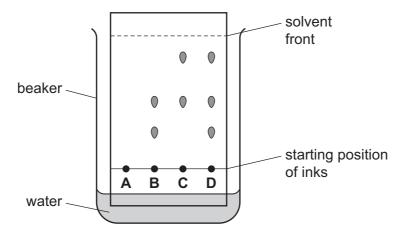


Fig. 1.1

(a)	-	plain why the water level in the beaker must be below the ink dots at the start of the deriment.	:he
			 [1]
(b)	Sug	ggest why ink A did not move during the experiment.	
	•••••		[1]
(c)	(i)	State how many different components ink D contains.	
			[1]
	(ii)	State one similarity and one difference in the compositions of inks B and C .	
		similarity	
			••••
		difference	
			 [2]
			141

Please turn over for Question 2.

2 A metre rule is clamped to a ramp. Fig. 2.1 shows the experimental set up.

For Examiner's Use

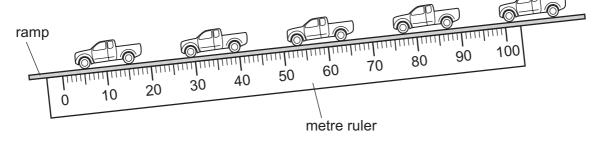


Fig. 2.1

- The ramp is tilted and a toy car is held at the top of the ramp.
- The car is given a gentle push and it moves down the ramp.
- The positions of the car after successive time intervals of 0.20 s are shown.
- (a) (i) Read off the positions of the front of the car after each time interval.

Record the values, to the nearest centimetre, in Table 2.1.

Table 2.1

time/s	0.0	0.20	0.40	0.60	0.80
position/cm	99				

[1]

(11)	travelling at constant speed.	S
	[2	2]
(iii)	Calculate the speed of the car as it moves down the ramp.	
	Show your working in the box.	

unit

- (b) In a separate experiment the angle of the ramp is increased.
 - The car is given a gentle push and it moves down the ramp.
 - Fig. 2.2 shows the positions of the car in successive 0.20 s intervals.

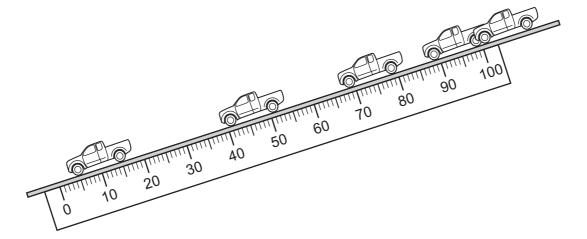


Fig. 2.2

Describe the motion of the car in this experiment.	
	[1

3	(a)	Potassium nitrate can be made by reacting an acid with an alkali.	For Examinaria
		Name these reagents.	Examiner's Use
		acid	
		alkali [2]	
	(b)	State the name given to the reaction of an acid with an alkali.	
		[1]	
	(c)	The potassium nitrate formed is in aqueous solution.	
		Describe how you could obtain dry crystals of potassium nitrate from this solution.	
		[2]	

Please turn over for Question 4.

4 Fig. 4.1 shows apparatus used to demonstrate one method of transfer of thermal energy.

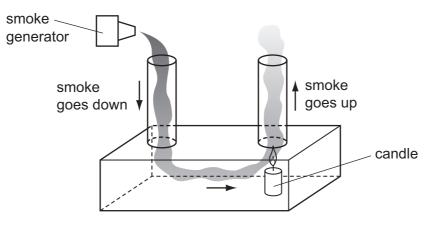


Fig. 4.1

(a) (i)	Name the method of thermal energy transfer this experiment demonstrates.				
		[1]			
(ii)	Explain how the candle makes the smoke rise up the right hand tube.				
		[31			

(b) Fig. 4.2 shows an eagle gliding round a thermal. A thermal is a column of rising hot air.

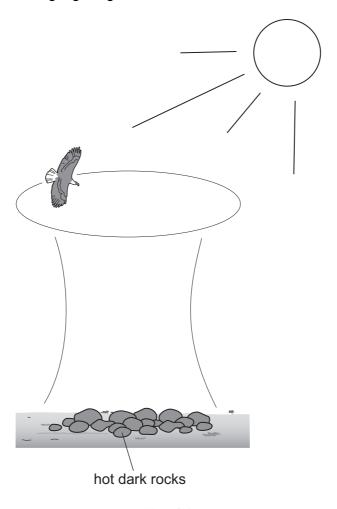


Fig. 4.2

(i)	The rocks are heated by electromagnetic radiation from the sun.	
	Name the type of electromagnetic radiation that heats the rocks.	
		[1]
(ii)	Explain how the thermal is formed.	
		[1]

5

Hyd	drogen has been described as 'a clean fuel which produces no pollution'.	
(a)	Write a balanced equation for the burning of hydrogen in air.	
		[2]
(b)	State why the burning of hydrogen is an oxidation reaction.	
		[1]
(c)	Explain why the burning of hydrogen does not produce pollution.	
		[1]
(d)	Give one disadvantage of using hydrogen as a fuel instead of petrol.	-
		[1]

6 Fig. 6.1 shows water waves in a ripple tank. The wavefronts pass from the deep water to the shallow water.

For Examiner's Use

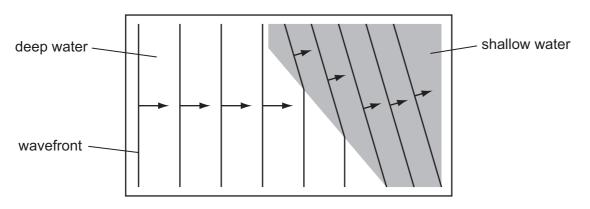


Fig. 6.1

(a)	Name	the	wave	behaviou	ur this	experiment	C	lemonstr	ates	S.
----	---	------	-----	------	----------	---------	------------	---	----------	------	----

[1]

- **(b)** State the change, if any, to these properties as the waves enter shallow water.
 - (i) wavelength____
 - (ii) frequency
 - (iii) speed

[3]

(c) Fig. 6.2 shows the electromagnetic spectrum.

radio waves	micro- waves infra-red	visible Y	X-rays	γ-rays
-------------	---------------------------	------------------	--------	--------

Fig. 6.2

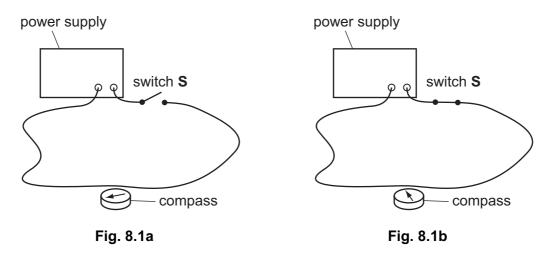
(i)	Name the type	of radiation	found in	region	Y.
-----	---------------	--------------	----------	--------	----

[1

(ii) When the Sun moves from behind a cloud we feel an increase in warmth and see an increase in brightness at the same time.

State what this suggests about the speeds of different types of electromagnetic radiation.

[1]


7

C	Chlo	orine is a member of Group VII of the Periodic Table.	
(;	a)	Use the electron configuration of chlorine to explain why it is in Group VII.	
			[1]
(1	b) (Chlorine is a gas at room temperature.	
	I	Name another element in Group VII that is a gas at room temperature.	
			[1]
(c) l	Name an element in Group VII that is less reactive than chlorine.	
			[1]
(d)	(i) Name the compound formed when chlorine reacts with sodium.	
			[1]
	((ii) Name the type of bonding in this compound.	
			[1]
(e) l	Name a metal in the same period as chlorine.	
•	-, .		[1]

Please turn over for Question 8.

8 Fig. 8.1a shows a long conducting wire connected to a switch and power supply. A small plotting compass is placed near the wire.

For Examiner's Use

Switch ${\bf S}$ is closed and the plotting compass needle moves to the position shown in Fig. 8.1b.

(a)	State the conclusion that can be made from this experiment.
	[1

(b) A student takes a similar wire and wraps it around a cylindrical piece of soft ion. She connects it to a switch and a power supply.

For Examiner's Use

She holds the soft iron above some light iron nails which are on the work bench, as shown in Fig. 8.2.

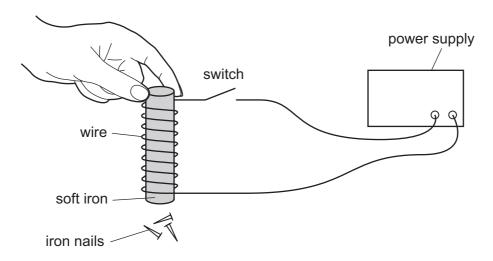


Fig. 8.2

(i)	State what the student observes when the switch is closed. Give a reason for your answer.
	observation
	reason
	[2]
(ii)	State what the student observes when the switch is opened again. Give a reason for your answer.
	observation
	reason
	[2]
(iii)	She replaces the soft iron with a steel cylinder of the same size. Describe what she observes when she
	closes the switch,
	opens the switch.
	[2]

9	(a)	The treatment of water to make it safe for domestic use involves two main steps.	For Examin
		Name these steps.	Use
		step 1	
		step 2 [2]	
	(b)	Anhydrous copper(II) sulfate can be used to test for the presence of water.	
		Describe the change that shows water is present.	
		[1]	
	(c)	Describe how you could show that a liquid is pure water.	
		[2]	

ner's

Please turn over for Question 10.

10 Fig. 10.1 shows a circuit diagram with a battery of e.m.f. 6.0 V, an ammeter, and two resistors of $4.0\,\Omega$ and $8.0\,\Omega$.

For Examiner's Use

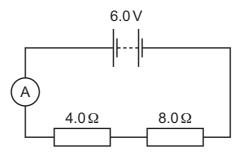


Fig. 10.1

(a) (i) Calculate the resistance in the circuit.

resistance =	2 [1	
--------------	-----	---	--

(ii) Calculate the current in the circuit and give the unit.

- **(b)** A teacher wants to show his students the potential difference across the $4.0\,\Omega$ resistor.
 - (i) Name the instrument that he should use.

[1]

(ii) On Fig. 10.1, show how the instrument should be connected. [1]

(iii) Calculate the potential difference across the $4.0\,\Omega$ resistor and give the unit.

potential difference = _____ unit ____ [2]

(c) The teacher rearranges the resistors so that they are in parallel.

For Examiner's Use

[1]

(i) Complete Fig. 10.2 to show this circuit.

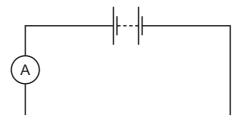


Fig. 10.2

(ii)	State how the current from the battery in Fig. 10.2 compares with the current from the battery in Fig. 10.1.
	Explain your answer.
	[0]

For Examiner's Use

2[i											
(b)	The alkane	es are an hor	nologous series.								
	Complete	Table 11.1.									
			Table 11.	1	7						
		alkane	molecular formula	structural formula							
		methane		H H—C—H 							
				Н	-						
		ethane	C ₂ H ₆								
		propane		H H H							
					[3]						
, ,	0.1	6									
(C)	State one	use of metha	ane.								
	•••••				[1]						

I)	ıne	e alkenes are another nomologous series.
	(i)	Describe the difference in bonding between alkanes and alkenes.
		[2]
	(ii)	Describe a chemical test to show that a compound is an alkene rather than an alkane.
		test
		result [2]

12 Fig. 12.1 shows some of the principal parts of a nuclear reactor used to generate electricity.

For Examiner's Use

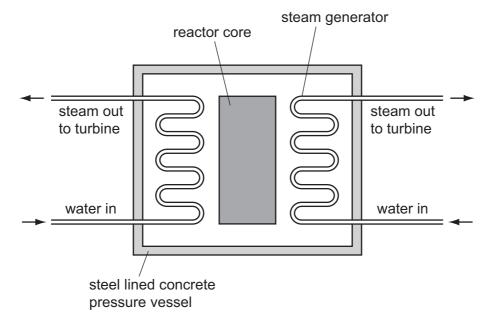


Fig. 12.1

The reactor is fuelled with uranium which undergoes nuclear fission.

(a)	(i)	Explain what is meant by <i>nuclear fission</i> .	
			•••••
			[2]
	(ii)	During the fission process particles are released with very high speeds.	
		Name the form of energy that these particles have due to their motion.	
			[1]
(b)	Sug	ggest a reason why the pressure vessel is made from steel and thick concrete.	
			[1]
			_

13	Pot	assium nitrate, KNO ₃ , and potassium phosphate, K ₃ PO ₄ , are both used as fertilizers.	
	(a)	Calculate the relative molecular mass of potassium nitrate. [relative atomic masses, A_r : K, 39; N, 14; O, 16]	
		Write your working in the box.	
		answer	[1]
	(b)	Show, by calculation, that potassium phosphate contains more than 50% potassium mass. [relative atomic masses, A_r : K, 39; O, 16; P, 31;]	n by
		Write your working in the box.	
			[3]

For Examiner's Use

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne Neon 10	40 Ar Argon	84 Kr	Krypton 36	131	Xenon	54	Rn	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
			19 T Fluorine	35.5 C1 Chlorine	80 B	Bromine 35	127		53	At	Astatine 85		173 Yb Ytterbium 70	Nobelium
	I/		16 O Oxygen 8	32 S Sulfur	79 Se	Selenium 34	128	Tel	52	Ро			169 Tm Thulium	Md Mendelevium 101
	>	>	14 N Nitrogen 7	31 Phosphorus			122	Sb	51	6 500	Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	<u>></u>		12 C Carbon 6	28 Si Silicon		Germanium 32	119	Sn ⊧		207 Pb	Lead 82		165 Ho Holmium 67	Es Einsteinium 99
	≡		11 Boron 5	27 A t Aluminium 13	70 Ga	Gallium 31	115	Ln	49	204 T (Thallium 81		162 Dy Dysprosium 66	Cf Californium 98
					es Zn	Zinc 30	112	Cadmium	48	201 Hg	Mercury 80		159 Tb Terbium 65	Bk Berkelium 97
					64 Cu	Copper 29	108	Ag		Au	Gold 79		157 Gd Gadolinium 64	Cm Curium
Group					59 X	Nickel 28	106	Pd Palladium	46	195 7	Platinum 78		152 Eu Europium 63	Am Americium 95
Gro					59 Co	Cobalt 27	103	R hodium	45	192 I r	lridium 77		150 Sm Samarium 62	Pu Plutonium 94
		1 H Hydrogen 1			56 Fe	Iron 26	101	Ru Ruthenium	44	190 Os	Osmium 76		Pm Promethium 61	Np Neptunium 93
					ss Mn	Manganese 25		Tc Technetium	43	786 R	Rhenium 75		144 Nd Neodymium 60	238 U Uranium
					Ç	Chromium 24	96	Mo Molybdenum	42	≨ ≥	Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
					51	Vanadium 23	93	Niobi um	41	–	Tantalum 73		140 Ce Cerium	232 Th Thorium
					⁴⁸	Titanium 22	91	Zirconium	40	# 148	* Hafnium		ı	nic mass ibol nic) number
					45 Sc	Scandium 21	89		36	139 La	E	227 Ac Actinium 89	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca	Calcium 20	88	Strontium	38	137 Ba	Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	а × Ф
	_		7 Li Lithium	23 Na Sodium	% X	Potassium 19	85	Rb Rubidium	37	Cs CS	Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.