MARK SCHEME for the November 2005 question paper

0625 PHYSICS

0625/02 Paper 2 (Theory)

Maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

1 (a) $8.5(\mathrm{~cm})$
(b) 19.0 OR $19(\pm 0.1)(\mathrm{cm})$
(c) his (b) - his (a) C1 his correct subtraction

2 (a) distance/time
12.5
m / s
(b) less OR decreased OR slowing down B1
(c) more than ecf

3 (a) skate M1 small area (in contact with ice) A1
(b) large area
wind causes large force on side of truck vehicle liable to blow over)

4 (a) 40 or 160
(b) 720B1
(c) $\mathrm{W}=\mathrm{Fxd}$ C1
720×0.2 C1
144 A1
J OR joule B1
(d) $\mathrm{his}(\mathrm{c}) / 1.2$ C1
his(c)/1.2 correctly evaluated C1
$0.5 \times$ his(c)/1.2 correctly evaluated A1i.e. 60 gets $\mathrm{C} 1, \mathrm{C} 1, \mathrm{~A} 1$ and 120 gets $\mathrm{C} 1, \mathrm{C} 1, \mathrm{~A} 0$)W OR watt OR J/sB1

5 (a) level in tube lower, or equivalent
(b) air has expanded (could be scored in (a), but not twice) OR Kinetic Theory application to pressure
(c) any sensible comment
e.g. limited temp range, air bubbles out of tube, slow acting, large volume of air, change in air pressure, no scale

6 (a) (i) current (in coil)
magnetic field (around coil)
(ii) magnetised OR attract
(b) current zero at first (even if only at origin) B1
horizontal first part
vertical rise somewhere B1
horizontal final part B1

7 (a) three rays parallel and horizontal B1
(b) (i) both principal foci marked B1
$\begin{array}{ll}\text { (ii) } \begin{array}{l}\text { refraction at mid-line, then through } F \\ \text { (allow } 2 \text { surface refractions if lead back to mid-line) }\end{array} & \text { B1 }\end{array}$
$\begin{array}{ll}\text { (iii) } \begin{array}{l}\text { ray through } F \text { to mid-line, then parallel } \\ \text { (allow as (ii)) }\end{array} & \text { B1 }\end{array}$
$\begin{array}{ll}\text { (iv) image drawn between axis and intersection, perpendicular to axisC } & \text { B1 } \\ \text { (condone no labelling) }\end{array}$
drawing accuracy mark for image 2 squares tall $\pm 2 \mathrm{~mm}$ and
4 squares away $\pm 2 \mathrm{~mm}$
$\begin{array}{llll}8 & \text { (a) } & \text { (i) } \quad \begin{array}{l}\text { iron OR steel OR any ferromagnetic material } \\ (B 0 \text { if magnetised stated })\end{array} & \text { B1 }\end{array}$
(ii) 1. nothing ecf from (i)
B1
2. nothing
(b) L.H. compass pointing to R B1
top compass pointing to L B1
bottom compass pointing to L

9 (a) 1 correct
2 correct
4 correct

(b) (i) all 6 components shown in series (any order)
(ii) voltmeter connected across cell, either our diag or his
(iii) both B1
(iv) 0.5
(v) current stops OR ammeters read zero OR other bulb goes out

10 (a) $10 \times 4 \times 6.5$ C1
$260\left(\mathrm{~cm}^{3}\right)$ A1
(b) $D=M / V$ in any form, words, letters, numbers, mixed C1

250/his \vee ecf if written down C1
0.961538 any no. of sig figs ecf C1
0.96 ecf A1
$\mathrm{g} / \mathrm{cm}^{3}$ unless inconsistent with his figures B1
(b) A
(c) (i) D
(ii) idea of detecting electrons/making spot visible
(d) deflects them B1
(e) no air OR no molecules OR no particles OR "nothing" B1
to stop/slow down/absorb the electrons/cathode rays B1

12 (a) (i) time taken for (B 0 for half the time) B1
activity/count-rate/mass etc. B1
to decrease to half original value B1
(ii) radiation due to surroundings B1
(b) (i) 80-25 C1

55 cao A1
(ii) 1. 27.5 ecf B1
2. 52.5 ecf B1
(iii) 15 ± 1 ecf B1
(iv) background remains, even when source has decayed B1
(v) curve to the left of existing one B1
flattening out at 25 count/min B1

