UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0625 PHYSICS

0625/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	S.
	IGCSE – October/November 2010	0625	Do

NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

- B marks are independent marks, which do not depend on any other marks. For a B mark scored, the point to which it refers must actually be seen in the candidate's answer.
- Cambridge.com M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers **must** be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.
- are compensatory method marks which can be scored even if the points to which they C marks refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.
- A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.
- means "correct answer only". c.a.o.
- e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated "e.c.f."
- means "each error or omission". e.e.o.o.
- brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets.

e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

- underlining indicates that this must be seen in the answer offered, or something very similar.
- OR/or indicates alternative answers, any one of which is satisfactory for scoring the marks.
- Spelling Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit.
- Significant Answers are acceptable to any number of significant figures ≥ 2 , except if specified figures otherwise, or if only 1 sig.fig. is appropriate.
- Units It is expected that all final answers will have correct units. Deduct one unit penalty for each incorrect or missing unit, maximum 1 per question. No unit penalty if unit is missing from final answer but is shown correctly in the working.
- Fractions These are only acceptable where specified.
- Extras Ignore extras in answers if they are irrelevant; if they contradict an otherwise correct response or are forbidden by mark scheme, use right + wrong = 0

	Mark Scheme: Teachers' version	Syllabus r
	IGCSE – October/November 2010	0625
(a) (i) (v – 2.7	- u)/t OR v/t OR 8/3 m/s ²	Syllabus 0625 =) 88 m C1
	OR 42 × answer from (i) OR 42 × 8/3)/112 N e.c.f.	A1
use	atance in 1 st 3 secs =) 12 m OR (dist in last 3 secs = e of area of trapezium OR area of "top" triangle m/s	=) 88 m C1 C1 A1
longer to	ime to top speed) otal time) p speed)	
specific/ less sloj	hishing speed) any 2 /all speeds lower (not speed decreases)) pe/less acceleration (in first section)) slope/greater deceleration in 2 nd section)	2 B1+B1
		[Total: 9]
a) all four = upwards	= 40 N OR all four add up to 160 N s	B1 B1
W>	< 0.17/0.20/0.23 = 160 × 0.72/0.75/0.78 < 0.17 = 160 × 0.78 or 600 N 0/734 N	C1 C1 A1
(ii) forc	ce by P = 160 + answer to (i) correctly evaluated	B1
all	others = 0	B1
		[Total: 7]
(a) (i) bon	nbardment/collide by air molecules/particles/atoms	B1
fast	ter/very small/smaller than smoke particles/too small -moving/high kinetic energy dom movement/movement in all directions	l to be seen)) any 2) B1+B1
(b) (i) incr	reases (builds up)	B1
		B1
• •	molecules/particles/atoms bombard/hit walls	
mol (igr	molecules/particles/atoms bombard/hit walls lecules faster/higher energy when temperature raised nore vibrate faster) ater force (per unit area) OR more collisions (per s	d B1

(ii) molecules at hot end vibrate more/have high/more energy OR knocked by molecules/free electrons at hot end have more energy energy/vibration transferred to neighbours/shared OR (energetic) electrons move along rod B1) copper is a better conductor OR iron is a poorer conductor (ignore electrical) B1) iron conducts heat slowly OR poor conduction by iron sideways from flame above gauze: flame retains its energy OR gas hot enough to burn B1 above gauze: gas not incandescent above gauze OR gas not hot enough to burn B1 (i) heat/energy to raise/change temperature of 1 kg/g/unit mass through 1°C/1K/unit temperature M1 (ii) 1. 182 2. (mass of 1m ² =) volume × density OR $D = M/V OR (1 ×) 0.01 × 7800$ 78 kg B1 3. $Q = mc\theta$ 182 = 78 × 450 × 0 (e.c.f. from 1,2) B1	Page 4	Mark Scheme: Teachers' version	Syllabus r
) copper is a better conductor OR iron is a poorer conductor (ignore electrical) B1) iron conducts heat slowly OR poor conduction by iron sideways from flame B1 above gauze: flame retains its energy OR gas hot enough to burn B1 copper conducts heat rapidly OR good conduction by copper sideways from flame B1 above gauze: gas not incandescent above gauze OR gas not hot enough to burn B1 (Total: 8)) heat/energy to raise/change temperature M1 of 1 kg/g/unit mass through 1°C/1K/unit temperature M1 (i) darker colours absorb more OR lighter/shiny colours absorb less B1 (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg A1 3. $Q = mc\theta$ B1 182 = 78 × 450 × θ (e.c.f. from 1,2) C13 × 00 × 00 × 00 × 00 × 00 × 00 × 00 ×		IGCSE – October/November 2010	0625
) copper is a better conductor OR iron is a poorer conductor (ignore electrical) B1) iron conducts heat slowly OR poor conduction by iron sideways from flame B1 above gauze: flame retains its energy OR gas hot enough to burn B1 copper conducts heat rapidly OR good conduction by copper sideways from flame B1 above gauze: gas not incandescent above gauze OR gas not hot enough to burn B1 (Total: 8)) heat/energy to raise/change temperature M1 of 1 kg/g/unit mass through 1°C/1K/unit temperature M1 (i) darker colours absorb more OR lighter/shiny colours absorb less B1 (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg A1 3. $Q = mc\theta$ B1 182 = 78 × 450 × θ (e.c.f. from 1,2) C13 × 00 × 00 × 00 × 00 × 00 × 00 × 00 ×	(a) (i) con	duction	Canno
) copper is a better conductor OR iron is a poorer conductor (ignore electrical) B1) iron conducts heat slowly OR poor conduction by iron sideways from flame B1 above gauze: flame retains its energy OR gas hot enough to burn B1 copper conducts heat rapidly OR good conduction by copper sideways from flame B1 above gauze: gas not incandescent above gauze OR gas not hot enough to burn B1 (Total: 8)) heat/energy to raise/change temperature M1 of 1 kg/g/unit mass through 1°C/1K/unit temperature M1 (i) darker colours absorb more OR lighter/shiny colours absorb less B1 (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg A1 3. $Q = mc\theta$ B1 182 = 78 × 450 × θ (e.c.f. from 1,2) C13 × 00 × 00 × 00 × 00 × 00 × 00 × 00 ×	• •	-	rgy ve more energy
(ignore electrical)B1) iron conducts heat slowly OR poor conduction by iron sideways from flameB1above gauze: flame retains its energy OR gas hot enough to burnB1copper conducts heat rapidly OR good conduction by copper sideways from flameB1above gauze: gas not incandescent above gauze OR gas not hot enough to burnB1(If the transform of 1 kg/g/unit mass through 1°C/1K/unit temperatureM1(i) darker colours absorb more OR lighter/shiny colours absorb lessB1(ii) 1. 182B12. (mass of 1m ² =) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800C178 kgA13. $Q = mc\theta$ B1182 = 78 × 450 × θ (e.c.f. from 1,2)C10.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2)A1			E
above gauze: flame retains its energy OR gas hot enough to burn copper conducts heat rapidly OR good conduction by copper sideways from flame above gauze: gas not incandescent above gauze OR gas not hot enough to burn [Total: 8]) heat/energy to raise/change temperature of 1 kg/g/unit mass through 1°C/1K/unit temperature) (i) darker colours absorb more OR lighter/shiny colours absorb less (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg 3. $Q = mc\theta$ 182 = 78 × 450 × θ (e.c.f. from 1,2) 0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2)			
copper conducts heat rapidly OR good conduction by copper sideways from flame B1 above gauze: gas not incandescent above gauze OR gas not hot enough to burn B1 [Total: 8]) heat/energy to raise/change temperature M1 of 1 kg/g/unit mass through 1°C/1K/unit temperature A1) (i) darker colours absorb more OR lighter/shiny colours absorb less B1 (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg 3. $Q = mc\theta$ 182 = 78 × 450 × θ (e.c.f. from 1,2) C1 0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2) A1	(c) iron con	ducts heat slowly OR poor conduction by iron side	ways from flame
above gauze: gas not incandescent above gauze OR gas not hot enough to burn [Total: 8] (Total: 8] (Total: 8] (i) heat/energy to raise/change temperature of 1 kg/g/unit mass through 1°C/1K/unit temperature (i) darker colours absorb more OR lighter/shiny colours absorb less (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg 3. $Q = mc\theta$ 182 = 78 × 450 × θ (e.c.f. from 1,2) 0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2)	above g	auze: flame retains its energy OR gas hot enough to	o burn E
[Total: 8] (i) heat/energy to raise/change temperature of 1 kg/g/unit mass through 1°C/1K/unit temperature A1 (ii) darker colours absorb more OR lighter/shiny colours absorb less B1 (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg 3. $Q = mc\theta$ 182 = 78 × 450 × θ (e.c.f. from 1,2) 0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2)	copper of	conducts heat rapidly OR good conduction by copp	per sideways from flame
) heat/energy to raise/change temperature of 1 kg/g/unit mass through 1°C/1K/unit temperature) (i) darker colours absorb more OR lighter/shiny colours absorb less (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg 3. $Q = mc\theta$ 182 = 78 × 450 × θ (e.c.f. from 1,2) 0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2)	above g	auze: gas not incandescent above gauze OR gas no	ot hot enough to burn E
of 1 kg/g/unit mass through 1°C/1K/unit temperature A1) (i) darker colours absorb more OR lighter/shiny colours absorb less B1 (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg 3. $Q = mc\theta$ 182 = 78 × 450 × θ (e.c.f. from 1,2) 0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2)			[Total:
) (i) darker colours absorb more OR lighter/shiny colours absorb less (ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg 3. $Q = mc\theta$ 182 = 78 × 450 × θ (e.c.f. from 1,2) 0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2) A1	(a) heat/ene	ergy to raise/change temperature	Ν
(ii) 1. 182 2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800 78 kg 3. $Q = mc\theta$ 182 = 78 × 450 × θ (e.c.f. from 1,2) 0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1,2) A1	of 1 kg/g	J/unit mass through 1°C/1K/unit temperature	ŀ
2. (mass of $1m^2 =$) volume × density OR $D = M/V$ OR (1 ×) 0.01 × 7800C178 kgA1 3. $Q = mc\theta$ B1182 = 78 × 450 × θ (e.c.f. from 1 , 2)C10.00519 °C/sOR5.19 × 10 ⁻³ °C/s (e.c.f. from 1 , 2)A1	(b) (i) darl	er colours absorb more OR lighter/shiny colours	absorb less E
78 kg A1 3. $Q = mc\theta$ B1 $182 = 78 \times 450 \times \theta$ (e.c.f. from 1,2)C1 0.00519 °C/s OR $5.19 \times 10^{-3} \text{ °C/s}$ (e.c.f. from 1,2)A1	\ /		
3. $Q = mc\theta$ B1 $182 = 78 \times 450 \times \theta$ (e.c.f. from 1 , 2)C1 $0.00519 \ ^{\circ}C/s$ OR $5.19 \times 10^{-3} \ ^{\circ}C/s$ (e.c.f. from 1 , 2)A1			
$182 = 78 \times 450 \times 0$ (e.c.f. from 1 , 2)C1 $0.00519 \ ^{\circ}C/s$ OR $5.19 \times 10^{-3} \ ^{\circ}C/s$ (e.c.f. from 1 , 2)A1		0	
0.00519 °C/s OR 5.19 × 10 ⁻³ °C/s (e.c.f. from 1 , 2) A1			
ITotal: 0		······································	[Total:

Page 5	Mark Scheme: Teache	ers' version Syllabus	No. Y
	IGCSE – October/Nov	ember 2010 0625	No.
(a) <i>mgh</i> C 5.5 J	R 0.5 × 10 × 1.1		MM. PapaCambrid.
(b) (i) 1.5	(J)		B1
OR	gy used to deform ball/ground strain energy stored in (deform heat generated in deformed bal	ed) ball/ground	B1
(c) (initial er use of ½ 7.6 m/s	nergy =) 9 + answer to (a) , corre <i>mv</i> ²	ectly evaluated	C1 C1 B1
			[Total: 7]
	s (as current increases) reasing rate		M1 A1
(b) (i) 25 🖸	2		B1
	in any form OR 0.070 x 25 1.8 V		C1 A1
) <i>IV</i> OR <i>I</i> ² <i>R</i> OR <i>V</i> ² / <i>R</i> in any W e.c.f. from (i)/(ii)	form, numbers, symbols or words	C1 A1
(c) (i) ans	ver to (b)(ii)		B1
(ii) use 12.5	of $1/R = 1/R_1 + 1/R_2$ OR $R = \Omega$	$R_1R_2/(R_1 + R_2)$	C1 A1
			[Total: 10]
(a) Fig.8.1 Fig. 8.2	nothing seen/no current/r	no deflection/no voltage rent in mV/voltage induced	B1 B1
Fig. 8.3		rent in mV/voltage induced	M1
	same direction as Fig. 8.2	2	A1
(b) increase increase	speed turns (of wire)/more coils	(ignore longer wire)	B1 B1
	turns (of wire)/more coils magnet strength	(ignore longer wire) (ignore larger magnet)	B' B'
			[Total: 7]

Page 6	Mark Scheme: Teachers' version	Syllabus Cr
	IGCSE – October/November 2010	0625 23
(a) (i) redu	iced	amb
(ii) redu	iced	
(b) $n = \frac{sp}{sp}$	eed in air/vacuum in any form	Syllabus 0625 BabaCamb
	ed in medium/glass	
2.0/2.03	x 10 ⁸ m/s	
(c) reflection		T
angle co	rrect, by eye	[Total:
		[10tal.
) (a) (i) Rin	correct position, by eye	
3 ret	flected waves correctly meeting mirror) flected wave equidistant, by eye) flected waves centred on candidate's R)	-1 e.e.o.o.
(b) 1 st ray +	reflection correct by eye	
reflected	reflection correct by eye rays projected back, to meet behind mirror	
OR label	led I and in correct position	TT . 4.1
		[Total:
(a) radioacti	vity is random/cannot be predicted	
(b) (i) bacł	kground	
(ii) radia	ation from surroundings/something specific in lab	
	ation from soil/rocks (accept example)/ ¹⁴ C/Sun/ h/space/cosmic radiation/radon) any 2 B1+
		[Total: