<u>Sound – 2020 IGCSE 0625</u>

1. March/2020/Paper_12/No.21

The diagrams show examples of wave motion.

2. March/2020/Paper_12/No.25

The horn on a ship makes a sound. The captain on the ship hears an echo from a cliff 4.0 s later.

The speed of sound is 340 m/s.

How far away is the cliff from the ship?

A 170 m

B 340 m

C 680 m

340×2 680m D 1360m

d=sxt.

t=4=2s from the ship to the clift.

3. March/2020/Paper_12/No.26

Bats produce ultrasound waves to navigate.

What is a possible frequency range for these waves?

KH2 - means 1000HZ prefix 10 = 1000

- A 0-20Hz infrasourd.
- B 20Hz-2000Hz & andible sound
- C 2kHz-20kHz ← 2000H2 20,000Hz audible sound.
- (D) 20 kHz-120 kHz 20,000Hz 120,000Hz ultrasound.

4. March/2020/Paper 22/No.28

The diagram shows compressions and rarefactions in air as a sound wave moves from left to right.

A quieter sound of the same frequency is made.

What will happen to the number of particles in a region of rarefaction and in a region of compression?

	number of particles in region of rarefaction	number of particles in region of compression
Α	decrease	decrease
В	decrease	increase
0	increase	decrease
D	increase	increase

- The particle will spread less at quieter sound since the amplitude is less
- So in varefaction region, particles will be more but in compression region they will be less.

5. June/2020/Paper_11/No.26

The graphs show the displacement of particles in sound waves from three sources X, Y and Z. The scales on the graphs are all identical.

displacement

source Z

Which sources are producing sound waves with the same pitch?

X and Y only

Y and Z only

C X and Z only

D X, Y and Z

6. June/2020/Paper 12/No.26

A dolphin sends out a sound wave. An echo returns 0.010 s later from a fish which is 7.5 m from the dolphin.

What is the speed of the sound wave in water?

0.075 m/s

0.15 m/s

750 m/s

=15 = 1500m/s

7. June/2020/Paper 13/No.26

A tuning fork produces a sound when it vibrates.

What is the effect on the sound produced when the tuning fork vibrates more times every second and with a larger amplitude?

lower pitch and less loud

lower pitch and louder

- So this turning fork produces a loud sound of high sitch!

8. June/2020/Paper_21/No.25

Sound travels through air as a series of compressions and rarefactions.

Which statement correctly compares a compression with a rarefaction?

- A In a compression the wavelength is longer than in a rarefaction.
- B In a compression the wavelength is shorter than in a rarefaction.
- In a compression the density of the air is greater than in a rarefaction.
- **D** In a compression the density of the air is lower than in a rarefaction.

density = mass
volume

- at compression, there is more air
particles in a small region

- so more particles, means more mass.

9. June/2020/Paper_22/No.25

A dolphin sends out a sound wave. An echo returns 0.010s later from a fish which is 7.5 m from the dolphin.

Consider the dolphin.

What is the speed of the sound wave in water?

+=0.0105 / =1500 m/s

- A 0.075 m/s
- B 0.15 m/s
- C 750 m/s
- 1500 m/s

10. June/2020/Paper_23/No.25

Two people are standing outdoors on either side of a high wall.

Person 1 can hear person 2 talking although he cannot see her.

Which statement explains this?

- A The sound waves have diffracted around the wall.
- B The sound waves have passed unaffected through the wall.
- C The sound waves have reflected around the wall.
- D The sound waves have refracted around the wall.

diffraction - bending of waves round obstacles or when through a gap.

11. June/2020/Paper_31/No.8

Fig. 8.1 represents the pressure at one instant along part of a sound wave.

12. June	e/2020/Paper_32/No.8		
Sc	ound travels as a wave.		
(a)	Complete each sentence.		
	Sound is produced when an object Vibrates		
	An echo is produced when sound is Veflected from a hard surface.		
	Compared with a quiet sound, a loud sound always has a greater amplitude		
	Compared with a high pitched sound, a low pitched sound always has a smaller . frequency		
	Waves transfer energy without transferring		
	[5]		
(b	State the meaning of the term ultrasound.		
	Vibration with higher frequency than [1]		
	audible Sound. [Total: 6]		
	APa Pa Canno		

13. June/2020/Paper_41/No.6

The speed of sound in air is 340 m/s.

f = 20HZ - 2000HZ

(a) Calculate the range of wavelengths for sounds that are audible by a healthy human ear.

(b) Sound waves are longitudinal waves.

Describe how a longitudinal wave differs from a transverse wave.

- In longitudinal waves, vibrations are parallel
to wave propagation
- In transverse, the vibrations are perpendicula
to the diriction of wave travel.

[3]

(c) Fig. 6.1 shows a band in front of a building.

Fig. 6.1

The drum produces a low frequency sound. Other musical instruments produce a high frequency sound. These sounds are equally loud.

A young man at the side of the building hears the drum but not the high frequency sounds from the other musical instruments. $\bigvee = f \times A$.

Explain why this happens.

- The wavelength from the drum sound is

greater than wavelength from other instrument
- So it has more diffraction and reaches [3]

the young man.

[Total: 8]